Lexical Interpretation of Visual Cues Using Deep Learning

被引:0
|
作者
Budarapu, Amrita [1 ]
Jain, Komal [1 ]
Sree, S. Bindu [1 ]
Varshitha, T. [1 ]
Niveditha, B. [1 ]
机构
[1] Narayanamma Inst Technol & Sci, Dept CSE AI&ML, Hyderabad, India
关键词
Lexical interpretation; Lip Reading; CNN; GRU; Visual cues;
D O I
10.1007/978-981-97-8031-0_89
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lexical interpretation of visual cues is an approach for understanding spoken phrases by visually observing the movements and shapes of a speaker's lips. A comprehensive review of the existing methods exposes the limitations of traditional lip reading techniques in capturing both spatial and temporal dimensions of lip movements. To address this gap, this project presents an approach to advance lip reading efficacy by synergizing Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU). The system has achieved an accuracy of 97% on GRID dataset. The implications of this research extend to improved communication accessibility for individuals with hearing impairments as well as broader applications in areas such as criminal investigations and security.
引用
收藏
页码:833 / 842
页数:10
相关论文
共 50 条
  • [41] Universal Interpretation of Electrocardiograms as Plain Language Using Deep Learning
    Vaid, Akhil
    Nadkarni, Girish N.
    CIRCULATION, 2023, 148
  • [42] Interpretation of deep learning using attributions : application to ophthalmic diagnosis
    Singh, Amitojdeep
    Rasheed, Mohammed Abdul
    Zelek, John
    Lakshminarayanan, Vasudevan
    APPLICATIONS OF MACHINE LEARNING 2020, 2020, 11511
  • [43] Lexical Segmentation in Artificial Word Learning: The Effects of Converging Sublexical Cues
    Bagou, Odile
    Frauenfelder, Ulrich Hans
    LANGUAGE AND SPEECH, 2018, 61 (01) : 3 - 30
  • [44] Automatic seismic facies interpretation using supervised deep learning
    Zhang, Haoran
    Chen, Tiansheng
    Liu, Yang
    Zhang, Yuxi
    Liu, Jiong
    GEOPHYSICS, 2021, 86 (01) : M15 - M33
  • [45] Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI
    Li, Xiaoxiao
    Dvornek, Nicha C.
    Zhuang, Juntang
    Ventola, Pamela
    Duncan, James S.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 : 206 - 214
  • [46] FUSION OF VISUAL ATTENTION CUES BY MACHINE LEARNING
    Lee, Wen-Fu
    Huang, Tai-Hsiang
    Yeh, Su-Ling
    Chen, Homer H.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [47] Reversal learning of visual cues in Heliconiini butterflies
    Young, Fletcher J.
    Melo-Florez, Lina
    McMillan, W. Owen
    Montgomery, Stephen H.
    ANIMAL BEHAVIOUR, 2024, 208 : 69 - 77
  • [48] Deep learning interpretation of echocardiograms
    Ghorbani, Amirata
    Ouyang, David
    Abid, Abubakar
    He, Bryan
    Chen, Jonathan H.
    Harrington, Robert A.
    Liang, David H.
    Ashley, Euan A.
    Zou, James Y.
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [49] Deep learning interpretation of echocardiograms
    Amirata Ghorbani
    David Ouyang
    Abubakar Abid
    Bryan He
    Jonathan H. Chen
    Robert A. Harrington
    David H. Liang
    Euan A. Ashley
    James Y. Zou
    npj Digital Medicine, 3
  • [50] Sensing the mood of a conversation using non-verbal cues with Deep Learning
    Bohy, Hugo
    2022 10TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS, ACIIW, 2022,