Abdominal Synthetic CT Generation Using Transformer-Based Cycle-Gan for MR-Guided Radiotherapy

被引:0
|
作者
Lee, C. W. [1 ]
Yoon, Y. H. [1 ]
Chun, J. [2 ]
Sung, J. [3 ]
Kim, J. [3 ]
Cho, Y. [3 ]
Kim, J. W. [3 ]
Kim, J. S. [1 ]
机构
[1] Yonsei Univ, Heavy Ion Therapy Res Inst, Coll Med, Yonsei Canc Ctr,Dept Radiat Oncol, Seoul, South Korea
[2] OncoSoft, Seoul, South Korea
[3] Yonsei Univ, Gangnam Severance Hosp, Dept Radiat Oncol, Coll Med, Seoul, South Korea
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TU300-GPD(
引用
收藏
页码:7743 / 7743
页数:1
相关论文
共 50 条
  • [31] Synthetic CT generation from CBCT based on structural constraint cycle-EEM-GAN
    Lu, Qianhong
    Luo, Feng
    Shi, Juntian
    Xu, Kunyuan
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (06):
  • [32] CT-Based Pelvic T1-Weighted MR Image Synthesis Using UNet, UNet plus plus and Cycle-Consistent Generative Adversarial Network (Cycle-GAN)
    Kalantar, Reza
    Messiou, Christina
    Winfield, Jessica M.
    Renn, Alexandra
    Latifoltojar, Arash
    Downey, Kate
    Sohaib, Aslam
    Lalondrelle, Susan
    Koh, Dow-Mu
    Blackledge, Matthew D.
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [33] Self-learning GAN based synthetic CT generation: unlocking CBCT-based adaptive radiotherapy
    Roque, T.
    Oumani, A.
    Delasalles, E.
    Paragios, N.
    Fenoglietto, P.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S290 - S291
  • [34] Automated Deformable Registration Using Patch-Based ViT-Morph for MR-Guided Adaptive Radiotherapy
    Zhao, Y.
    Chen, X.
    Yu, C.
    Court, L.
    McDonald, B.
    Pan, T.
    Wang, H.
    Wang, X.
    Phan, J.
    Yang, J.
    MEDICAL PHYSICS, 2022, 49 (06) : E202 - E202
  • [35] TransDose: Transformer-based radiotherapy dose prediction from CT images guided by super-pixel-level GCN classification
    Jiao, Zhengyang
    Peng, Xingchen
    Wang, Yan
    Xiao, Jianghong
    Nie, Dong
    Wu, Xi
    Wang, Xin
    Zhou, Jiliu
    Shen, Dinggang
    MEDICAL IMAGE ANALYSIS, 2023, 89
  • [36] Abdominal synthetic CT generation from MR Dixon images using a U-net trained with 'semi-synthetic' CT data
    Liu, Lianli
    Johansson, Adam
    Cao, Yue
    Dow, Janell
    Lawrence, Theodore S.
    Balter, James M.
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (12):
  • [37] MR-based synthetic CT generation using a conditional generative adversarial network
    Wang, Zhenyu
    Lian, Jie
    Chen, Tao
    Zheng, Wei
    Yue, Shaolong
    Ji, Senrong
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 17 - 18
  • [38] Cone-Beam CT to CT Image Translation Using a Transformer-Based Deep Learning Model for Prostate Cancer Adaptive Radiotherapy
    Koike, Yuhei
    Takegawa, Hideki
    Anetai, Yusuke
    Nakamura, Satoaki
    Yoshida, Ken
    Yoshida, Asami
    Yui, Midori
    Hirota, Kazuki
    Ueda, Kenichi
    Tanigawa, Noboru
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024,
  • [39] Bony structure enhanced synthetic CT generation using Dixon sequences for pelvis MR-only radiotherapy
    Liang, Xiao
    Yen, Allen
    Bai, Ti
    Godley, Andrew
    Shen, Chenyang
    Wu, Junjie
    Meng, Boyu
    Lin, Mu-Han
    Medin, Paul
    Yan, Yulong
    Owrangi, Amir
    Desai, Neil
    Hannan, Raquibul
    Garant, Aurelie
    Jiang, Steve
    Deng, Jie
    MEDICAL PHYSICS, 2023, 50 (12) : 7368 - 7382
  • [40] Dosimetric evaluation of deep learning based synthetic-CT generation for MR-only brain radiotherapy
    Dinkla, A. M.
    Wolterink, J. M.
    Maspero, M.
    Savenije, M. H. F.
    Verhoeff, J. J. C.
    Isgum, I.
    Seevinck, P. R.
    Lagendijk, J. J. W.
    Van den Berg, C. A. T.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S151 - S151