Adaptive Unified Framework with Global Anchor Graph for Large-Scale Multi-view Clustering

被引:0
|
作者
Shi, Lin [1 ]
Chen, Wangjie [1 ]
Liu, Yi [1 ]
Zhuang, Lihua [1 ]
Jiang, Guangqi [1 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Large-scale Multi-view Clustering; Bipartite Graph Learning; Learning-based Anchor Selection;
D O I
10.1007/978-981-97-8487-5_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering faces serious challenges in reducing computational and memory demands for large-scale datasets while effectively extracting structural information from multi-view data. Most existing methods address algorithmic complexity by introducing anchors, typically through a two-stage process involving anchor sampling and subsequent bipartite graph construction. However, the quality of anchor selection directly affects the performance of the bipartite graph, this two-stage mechanism lacks mutual optimization, thereby negatively impacting clustering performance. To address these issues, we propose the Adaptive Unified Framework with Global Anchor Graph for Large-scale Multi-view Clustering (AUF-LMC). Different from the traditional sample-based anchor selection mechanism, AUF-LMC adaptively learns the underlying anchors across multiple views and builds global bipartite graph on this basis, so that these two processes can be linked to each other to promote optimization and improve clustering performance. Furthermore, we unify all processes within a single framework and apply appropriate constraints to the bipartite graph. Experimental evaluations demonstrate that our method delivers superior clustering performance and efficiency, characterized by fast convergence and robustness on standard datasets.
引用
收藏
页码:537 / 550
页数:14
相关论文
共 50 条
  • [31] The methods for improving large-scale multi-view clustering efficiency: a survey
    Yang, Zengbiao
    Tan, Yihua
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (06)
  • [32] Self-Weighted Anchor Graph Learning for Multi-View Clustering
    Shu, Xiaochuang
    Zhang, Xiangdong
    Gao, Quanxue
    Yang, Ming
    Wang, Rong
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5485 - 5499
  • [33] Anchor-based multi-view subspace clustering with graph learning
    Su, Chao
    Yuan, Haoliang
    Lai, Loi Lei
    Yang, Qiang
    NEUROCOMPUTING, 2023, 547
  • [34] MULTI-VIEW ANCHOR GRAPH HASHING
    Kim, Saehoon
    Choi, Seungjin
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3123 - 3127
  • [35] Scalable Multi-View Graph Clustering With Cross-View Corresponding Anchor Alignment
    Wang, Siwei
    Liu, Xinwang
    Liao, Qing
    Wen, Yi
    Zhu, En
    He, Kunlun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2932 - 2945
  • [36] Large-scale multi-view spectral clustering based on two-stage well-distributed anchor selection
    Cheng, Xinran
    Tang, Ziyue
    Qi, Xinmu
    Qiang, Xinyi
    Xi, Huamei
    Ji, Xia
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [37] Multi-view clustering via dynamic unified bipartite graph learning
    Zhao, Xingwang
    Wang, Shujun
    Liu, Xiaolin
    Liang, Jiye
    PATTERN RECOGNITION, 2024, 156
  • [38] Joint Camera Clustering and Surface Segmentation for Large-scale Multi-view Stereo
    Zhang, Runze
    Li, Shiwei
    Fang, Tian
    Zhu, Siyu
    Quan, Long
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2084 - 2092
  • [39] Adaptive sparse graph learning for multi-view spectral clustering
    Xiao, Qingjiang
    Du, Shiqiang
    Zhang, Kaiwu
    Song, Jinmei
    Huang, Yixuan
    APPLIED INTELLIGENCE, 2023, 53 (12) : 14855 - 14875
  • [40] Adaptive sparse graph learning for multi-view spectral clustering
    Qingjiang Xiao
    Shiqiang Du
    Kaiwu Zhang
    Jinmei Song
    Yixuan Huang
    Applied Intelligence, 2023, 53 : 14855 - 14875