3D Point Cloud Attribute Compression Using Diffusion-Based Texture-Aware Intra Prediction

被引:1
|
作者
Shao, Yiting [1 ,2 ]
Yang, Xiaodong [3 ]
Gao, Wei [1 ,2 ]
Liu, Shan [4 ]
Li, Ge [3 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn SECE, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518066, Peoples R China
[3] Peking Univ, Shenzhen Grad Sch, SECE, Shenzhen 518055, Peoples R China
[4] Tencent, Media Lab, Palo Alto, CA 94306 USA
关键词
Point cloud compression; Image coding; Codecs; Three-dimensional displays; Interpolation; Encoding; Correlation; Point cloud attribute compression; progressive intra prediction; diffusion-based interpolation; predictive coding; WEIGHTED GRAPHS; IMAGE; REGULARIZATION; FRAMEWORK;
D O I
10.1109/TCSVT.2024.3396694
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There is an urgent need from various multimedia applications to efficiently compress point clouds. The Moving Picture Experts Group has released a standard platform called geometry-based point cloud compression (G-PCC). However, its k-nearest neighbor (k-NN) based attribute prediction has limited efficiency for point clouds with rich texture and directional information. To overcome this problem, we propose a texture-aware attribute predictive coding framework in a point cloud diffusion model. In our work, attribute intra prediction is solved as a diffusion-based interpolation problem, and a general attribute predictor is developed. It is theoretically proven that G-PCC k-NN based predictor is a degraded case of the proposed diffusion-based solution. First, a point cloud is represented as two levels of details with seeds as the inpainting mask and non-seed points to be predicted. Second, we design point cloud partial difference operators to perform energy-minimizing attribute inpainting from seeds to unknowns. Smooth attribute interpolation can be achieved via an iterative diffusion process, and an adaptive early termination is proposed to reduce complexity. Third, we propose a structure-adaptive attribute predictive coding scheme, where edge-enhancing anisotropic diffusion is employed to perform texture-aware attribute prediction. Finally, attributes of seeds are beforehand encoded and prediction residuals of left points are progressively encoded into bitstream. Experiments show the proposed scheme surpasses the state-of-the-art by an average of 14.14%, 17.52%, and 17.87% BD-BR gains on the coding of Y, U, and V components, respectively. Subjective results on attribute reconstruction quality also verify the advantage of our scheme.
引用
收藏
页码:9633 / 9646
页数:14
相关论文
共 50 条
  • [31] 3D Point Cloud Compression using Conventional Image Compression for Efficient Data Transmission
    Houshiar, Hamidreza
    Nuechter, Andreas
    2015 XXV INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT), 2015,
  • [32] Learning-based Intra-Prediction For Point Cloud Attribute Transform Coding
    Hou, Lizhi
    Gao, Linyao
    Xu, Yiling
    Li, Zhu
    Xu, Xiaozhong
    Liu, Shan
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [33] The texture of Chinese garden rockery stones: based on 3D point cloud and 3D printing technology
    Dong, Qianli
    Wei, Tianheng
    Zhang, Qingping
    Jia, Xingxing
    Pan, Ben
    NPJ HERITAGE SCIENCE, 2025, 13 (01):
  • [34] TSC-PCAC: Voxel Transformer and Sparse Convolution-Based Point Cloud Attribute Compression for 3D Broadcasting
    Guo, Zixi
    Zhang, Yun
    Zhu, Linwei
    Wang, Hanli
    Jiang, Gangyi
    IEEE TRANSACTIONS ON BROADCASTING, 2025, 71 (01) : 154 - 166
  • [35] A Fast Compression Framework Based on 3D Point Cloud Data for Telepresence
    Zun-Ran Wang
    Chen-Guang Yang
    Shi-Lu Dai
    International Journal of Automation and Computing, 2020, 17 (06) : 855 - 866
  • [36] LEARNING-BASED LOSSLESS COMPRESSION OF 3D POINT CLOUD GEOMETRY
    Dat Thanh Nguyen
    Quach, Maurice
    Valenzise, Giuseppe
    Duhamel, Pierre
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4220 - 4224
  • [37] A Fast Compression Framework Based on 3D Point Cloud Data for Telepresence
    Wang, Zun-Ran
    Yang, Chen-Guang
    Dai, Shi-Lu
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2020, 17 (06) : 855 - 866
  • [38] A Fast Compression Framework Based on 3D Point Cloud Data for Telepresence
    Zun-Ran Wang
    Chen-Guang Yang
    Shi-Lu Dai
    International Journal of Automation and Computing, 2020, 17 : 855 - 866
  • [39] Graph-Based Compression of Dynamic 3D Point Cloud Sequences
    Thanou, Dorina
    Chou, Philip A.
    Frossard, Pascal
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (04) : 1765 - 1778
  • [40] D-DPCC: Deep Dynamic Point Cloud Compression via 3D Motion Prediction
    Fan, Tingyu
    Gao, Linyao
    Xu, Yiling
    Li, Zhu
    Wang, Dong
    arXiv, 2022,