Data-augmented landslide displacement prediction using generative adversarial network

被引:4
|
作者
Ge, Qi [1 ]
Li, Jin [2 ]
Lacasse, Suzanne [3 ]
Sun, Hongyue [4 ]
Liu, Zhongqiang [3 ]
机构
[1] Nanjing Forestry Univ, Coll Civil Engn, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Inst Artificial Intelligence, Nanjing, Peoples R China
[3] Norwegian Geotech Inst, Dept Nat Hazards, Oslo, Norway
[4] Zhejiang Univ, Ocean Coll, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning (ML); Time series; Generative adversarial network (GAN); Three Gorges reservoir (TGR); Landslide displacement prediction; MEMORY NEURAL-NETWORK; TIME-SERIES ANALYSIS; 3 GORGES RESERVOIR; MACHINE; MODEL; DECOMPOSITION; ALGORITHMS;
D O I
10.1016/j.jrmge.2024.01.003
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide. Accurately predicting landslide displacement enables effective early warning and risk management. However, the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models, such as state-of-the-art machine learning (ML) models. To address these challenges, this study proposes a data augmentation framework that uses generative adversarial networks (GANs), a recent advance in generative artificial intelligence (AI), to improve the accuracy of landslide displacement prediction. The framework provides effective data augmentation to enhance limited datasets. A recurrent GAN model, RGAN-LS, is proposed, specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data. A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data. Then, the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory (LSTM) networks and particle swarm optimization-support vector machine (PSO-SVM) models for landslide displacement prediction tasks. Results on two landslides in the Three Gorges Reservoir (TGR) region show a significant improvement in LSTM model prediction performance when trained on augmented data. For instance, in the case of the Baishuihe landslide, the average root mean square error (RMSE) increases by 16.11%, and the mean absolute error (MAE) by 17.59%. More importantly, the model's responsiveness during mutational stages is enhanced for early warning purposes. However, the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM. Further analysis indicates that an optimal synthetic-to-real data ratio (50% on the illustration cases) maximizes the improvements. This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results. By using the powerful generative AI approach, RGAN-LS can generate high-fidelity synthetic landslide data. This is critical for improving the performance of advanced ML models in predicting landslide displacement, particularly when there are limited training data. Additionally, this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:4017 / 4033
页数:17
相关论文
共 50 条
  • [21] Interpretable data-augmented adversarial variational autoencoder with sequential attention for imbalanced fault diagnosis
    Liu, Yunpeng
    Jiang, Hongkai
    Yao, Renhe
    Zhu, Hongxuan
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 : 342 - 359
  • [22] Attribute Augmented Network Embedding Based on Generative Adversarial Nets
    Zheng, Conghui
    Pan, Li
    Wu, Peng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3473 - 3487
  • [23] Attention enhanced EfficientNet for concrete structure crack classification with generative adversarial network augmented data
    Lin, Xumei
    Wang, Shiyuan
    Shen, Jiahui
    STRUCTURAL CONCRETE, 2025,
  • [24] Data Augmentation of High Frequency Financial Data Using Generative Adversarial Network
    Naritomi, Yusuke
    Adachi, Takanori
    2020 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2020), 2020, : 641 - 648
  • [25] Shear bearing capacity prediction of STRC shear walls using data-augmented fusion model
    Yang, Guang-chao
    Zhang, Ji-gang
    Ma, Zhe-hao
    Xu, Wei-xiao
    Zhao, Guo-liang
    Song, Han-yu
    STRUCTURAL CONCRETE, 2024, 25 (04) : 2609 - 2623
  • [26] Acute leukemia prediction and classification using convolutional neural network and generative adversarial network
    Lian, Jiunn-Woei
    Wei, Chi-Hung
    Chen, Mu-Yen
    Lin, Ching-Chan
    APPLIED SOFT COMPUTING, 2024, 163
  • [27] Improving generalization in MR-to-CT synthesis in radiotherapy by using an augmented cycle generative adversarial network with unpaired data
    Boni, Evin N. D. Brou
    Klein, John
    Gulyban, Akos
    Reynaert, Nick
    Pasquier, David
    MEDICAL PHYSICS, 2021, 48 (06) : 3003 - 3010
  • [28] A New Integrated Approach for Landslide Data Balancing and Spatial Prediction Based on Generative Adversarial Networks (GAN)
    Al-Najjar, Husam A. H.
    Pradhan, Biswajeet
    Sarkar, Raju
    Beydoun, Ghassan
    Alamri, Abdullah
    REMOTE SENSING, 2021, 13 (19)
  • [29] Daily runoff forecasting based on data-augmented neural network model
    Bi, Xiao-ying
    Li, Bo
    Lu, Wen-long
    Zhou, Xin-zhi
    JOURNAL OF HYDROINFORMATICS, 2020, 22 (04) : 900 - 915
  • [30] Generative adversarial network for image deblurring using generative adversarial constraint loss
    Ji, Y.
    Dai, Y.
    Zhao, K.
    Li, S.
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 1180 - 1187