Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning

被引:4
|
作者
Qiao, Li [1 ,2 ]
Gao, Zhen [3 ,4 ,5 ,6 ]
Mashhadi, Mahdi Boloursaz [2 ]
Gunduz, Deniz [7 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Univ Surrey, Inst Commun Syst ICS, 5GIC & 6GIC, Guildford GU2 7XH, England
[3] Beijing Inst Technol Zhuhai, Zhuhai 519088, Peoples R China
[4] Beijing Inst Technol, MIIT Key Lab, Complex Field Intelligent Sensing, Beijing 100081, Peoples R China
[5] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314000, Peoples R China
[6] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250307, Peoples R China
[7] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
英国科研创新办公室; 中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Quantization (signal); Computational modeling; Wireless networks; Vectors; Modulation; Atmospheric modeling; Artificial intelligence; Artificial intelligence of things (AIoT); digital over-the-air computation; unsourced massive access; federated edge learning; distributed optimization;
D O I
10.1109/JSAC.2024.3431572
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.
引用
收藏
页码:3078 / 3094
页数:17
相关论文
共 50 条
  • [31] Over-the-Air Computation Assisted Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Luo, Xiliang
    Zhou, Yong
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5940 - 5945
  • [32] User Scheduling for Federated Learning Through Over-the-Air Computation
    Ma, Xiang
    Sun, Haijian
    Wang, Qun
    Hu, Rose Qingyang
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [33] Communication-efficient federated learning
    Chen, Mingzhe
    Shlezinger, Nir
    Poor, H. Vincent
    Eldar, Yonina C.
    Cui, Shuguang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)
  • [34] PRIVATE WIRELESS FEDERATED LEARNING WITH ANONYMOUS OVER-THE-AIR COMPUTATION
    Hasircioglu, Burak
    Gunduz, Deniz
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5195 - 5199
  • [35] Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation
    Xu, Chunmei
    Liu, Shengheng
    Yang, Zhaohui
    Huang, Yongming
    Wong, Kai-Kit
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3742 - 3756
  • [36] Federated Linear Bandit Learning via Over-the-air Computation
    Wang, Jiali
    Jiang, Yuning
    Liu, Xin
    Wang, Ting
    Shi, Yuanming
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1363 - 1368
  • [37] On the Differential Privacy in Federated Learning Based on Over-the-Air Computation
    Park, Sangjun
    Choi, Wan
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4269 - 4283
  • [38] Multiple Parallel Federated Learning via Over-the-Air Computation
    Shi, Gaoxin
    Guo, Shuaishuai
    Ye, Jia
    Saeed, Nasir
    Dang, Shuping
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 1252 - 1264
  • [39] Coded Over-the-Air Computation for Model Aggregation in Federated Learning
    Zhang, Naifu
    Tao, Meixia
    Wang, Jia
    Shao, Shuo
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 160 - 164
  • [40] Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT
    Mills, Jed
    Hu, Jia
    Min, Geyong
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 5986 - 5994