Explainable Machine Learning for Intrusion Detection

被引:0
|
作者
Bellegdi, Sameh [1 ]
Selamat, Ali [1 ,2 ,3 ,4 ]
Olatunji, Sunday O. [5 ]
Fujita, Hamido [1 ]
Krejcar, Ondfrej [4 ]
机构
[1] Univ Teknol Malaysia UTM, Malaysia Japan Int Inst Technol, Kuala Lumpur 54100, Malaysia
[2] Univ Teknol Malaysia, Univ Teknol Malaysia UTM, Fac Comp, Johor Baharu 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, Media & Games Ctr Excellence MagicX, Johor Baharu 81310, Johor, Malaysia
[4] Univ Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[5] Imam Abdulrahman Bin Faisal Univ, Dammam 31441, Saudi Arabia
关键词
intrusion detection; IDS; machine learning; explainable machine learning; XAI; SHAP; LIME;
D O I
10.1007/978-981-97-4677-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intrusion detection systems (IDS) are essential tools to maintain robust cybersecurity. Machine learning (ML)-based IDS provides promising results. However, such IDS are recognized as black-box and lack trust and transparency. There is a limited number of explainable IDS (X-IDS). Moreover, several X-IDS used outdated datasets. Some papers used deep neural network which is computationally expensive. This paper proposes lightweight tree-based X-IDS using a recent IDS dataset. We explore the effectiveness of explainable artificial intelligence (XAI) techniques in increasing ML-based IDS transparency. Four ML algorithms are employed; viz. LightGBM, random forests, AdaBoost, and XGBoost; to classify a given network flow as benign or malicious. Network flows extracted from the CSE-CIC-IDS2018 dataset are used to evaluate the IDS models. The best F1-score results of 0.979 and 0.978 are achieved with LightGBM and XGBoost, respectively. We use SHapley Additive exPlanations (SHAP) and Local Model-Agnostic Explanations (LIME) techniques to provide global and local explanations for predictions made by the LightGBM. The obtained explanations in the form of graphs provide measurable insights for cybersecurity experts regarding the most important features that impact the detection of intrusions.
引用
收藏
页码:122 / 134
页数:13
相关论文
共 50 条
  • [21] Intrusion detection and prevention with machine learning algorithms
    Chang, Victor
    Boddu, Sreeja
    Xu, Qianwen Ariel
    Doan, Le Minh Thao
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2023, 14 (06) : 617 - 631
  • [22] Adaptive Intrusion Detection Using Machine Learning
    Neethu, B.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2013, 13 (03): : 118 - 124
  • [23] Explainable Machine Learning for Malware Detection on Android Applications
    Palma, Catarina
    Ferreira, Artur
    Figueiredo, Mario
    INFORMATION, 2024, 15 (01)
  • [24] Machine Learning Based Network Intrusion Detection
    Lee, Chie-Hong
    Su, Yann-Yean
    Lin, Yu-Chun
    Lee, Shie-Jue
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2017, : 79 - 83
  • [25] Intrusion detection system based on machine learning
    Wang, Xu-Ren
    Xu, Rong-Sheng
    Jisuanji Gongcheng/Computer Engineering, 2006, 32 (14): : 107 - 108
  • [26] Explainable machine learning models for Medicare fraud detection
    John T. Hancock
    Richard A. Bauder
    Huanjing Wang
    Taghi M. Khoshgoftaar
    Journal of Big Data, 10
  • [27] Exploring Quantum Machine Learning for Explainable Malware Detection
    Ciaramella, Giovanni
    Martinelli, Fabio
    Mercaldo, Francesco
    Santone, Antonella
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [28] Explainable machine learning models for Medicare fraud detection
    Hancock, John T.
    Bauder, Richard A.
    Wang, Huanjing
    Khoshgoftaar, Taghi M.
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [29] Intrusion Detection for Wireless Sensor Network Using Particle Swarm Optimization Based Explainable Ensemble Machine Learning Approach
    Birahim, Shaikh Afnan
    Paul, Avijit
    Rahman, Fahmida
    Islam, Yamina
    Roy, Tonmoy
    Hasan, Mohammad Asif
    Haque, Fariha
    Chowdhury, Muhammad E. H.
    IEEE ACCESS, 2025, 13 : 13711 - 13730
  • [30] Explainable Machine Learning
    Garcke, Jochen
    Roscher, Ribana
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 169 - 170