Engineering of Polyisoprene Networks Enabled by Host-Guest Thiol-Ene Reaction

被引:0
|
作者
Kitao, Takashi [1 ,2 ]
Matsuda, Ikki [1 ]
Uemura, Takashi [1 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Appl Chem, Tokyo 1138656, Japan
[2] Japan Sci & Technol Agcy JST, PRESTO, Saitama 3320012, Japan
基金
日本学术振兴会;
关键词
METAL-ORGANIC FRAMEWORK; CROSS-LINKING; NATURAL-RUBBER; POLYMER; GEL; TRANSFORMATION; VULCANIZATION; FABRICATION; MECHANISMS; ALIGNMENT;
D O I
10.1021/acsmacrolett.4c00786
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Regulating cross-linking of polymers is critical for optimizing the physical properties of polymer networks. Herein, we present a strategic approach for designing polymer networks using dithiol-functionalized metal-organic frameworks (MOFs) with both one- and three-dimensional pore architectures. Upon thermal treatment, thiyl radicals were generated from the MOFs through the dissociation of S-H bonds, as confirmed by electron spin resonance measurements. Unlike in solution and bulk phases, the confinement of these radicals within the MOFs effectively suppressed homocoupling reactions, thus enabling their function as densely packed cross-linkers. The thiol-ene reaction between the MOFs and cis-1,4-polyisoprene (PI) chains, followed by the selective removal of MOF hosts, resulted in PI networks that retained the original structural features. The ordered alignment of the PI chains enhanced their thermal stability compared with the randomly cross-linked PI network.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 50 条
  • [11] FIRE BEHAVIOR OF PHOTOCURABLE THIOL-ENE NETWORKS
    Manzi-Nshuti, Charles
    Kwisnek, Luke
    Moffet, Omeshia
    Nazarenko, Sergei I.
    WATERBORNE SYMPOSIUM: PROCEEDINGS OF THE THIRTY-NINTH ANNUAL INTERNATIONAL WATERBORNE, HIGH-SOLIDS, AND POWDER COATINGS SYMPOSIUM, 2012, : 223 - 237
  • [12] Degradable, silyl ether thiol-ene networks
    Ware, Taylor
    Jennings, Abby R.
    Bassampour, Zahra S.
    Simon, Dustin
    Son, David Y.
    Voit, Walter
    RSC ADVANCES, 2014, 4 (75): : 39991 - 40002
  • [13] Oxygen Transport Properties of Thiol-Ene Networks
    Kwisnek, Luke
    Nazarenko, Sergei
    Hoyle, Charles E.
    MACROMOLECULES, 2009, 42 (18) : 7031 - 7041
  • [14] Polyanhydride Networks from Thiol-Ene Polymerizations
    Rutherglen, Broden G.
    McBath, Ryan A.
    Huang, Yu Ling
    Shipp, Devon A.
    MACROMOLECULES, 2010, 43 (24) : 10297 - 10303
  • [15] Shotgun Analysis of Diacylglycerols Enabled by Thiol-ene Click Chemistry
    Adhikari, Sarju
    Zhang, Wenpeng
    Xie, Xiaobo
    Chen, Qinhua
    Xia, Yu
    ANALYTICAL CHEMISTRY, 2018, 90 (08) : 5239 - 5246
  • [16] Highly Tunable Thiol-Ene Networks via Dual Thiol Addition
    McNair, Olivia. D.
    Sparks, Bradley J.
    Janisse, Andrew P.
    Brent, Davis P.
    Patton, Derek L.
    Savin, Daniel A.
    MACROMOLECULES, 2013, 46 (14) : 5614 - 5621
  • [17] Thiol-ene coupling reaction of fatty acid monomers
    Samuelsson, J
    Jonsson, M
    Brinck, T
    Johansson, M
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (24) : 6346 - 6352
  • [18] Evaluation and control of thiol-ene/thiol-epoxy hybrid networks
    Carioscia, Jacquelyn A.
    Stansbury, Jeffrey W.
    Bowman, Christopher N.
    POLYMER, 2007, 48 (06) : 1526 - 1532
  • [19] Influence of thiol and ene functionalities on thiol-ene networks: Photopolymerization, physical, mechanical, and optical properties
    Zhou, Jian
    Zhang, Qiu-yu
    Chen, Shao-jie
    Zhang, He-peng
    Ma, Ai-jie
    Ma, Ming-liang
    Liu, Qing
    Tan, Jiao-jun
    POLYMER TESTING, 2013, 32 (03) : 608 - 616
  • [20] The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties
    Li, Qin
    Zhou, Hui
    Hoyle, Charles E.
    POLYMER, 2009, 50 (10) : 2237 - 2245