Investigation of Reactive Compatibilization on Degradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends with Lysine Diisocyanate

被引:0
|
作者
Chen, Jiaoyu [1 ]
Wang, Xin [1 ]
Huang, Yu [1 ]
Zhang, Xiao [1 ]
Sun, Long [1 ]
Lu, Lingjie [1 ]
Li, Xiangqiang [1 ]
Shen, Lunjie [1 ]
Hong, Jie [1 ]
Zhou, Weihua [1 ]
Wu, Yang [1 ,2 ]
机构
[1] Nanchang Univ, Sch Phys & Mat, Nanchang 330031, Peoples R China
[2] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
biodegradable polymer; Lysine diisocyanate; Poly(butylene adipate-co-terephthalate); Poly(lactic acid); reactive compatibilization; MECHANICAL-PROPERTIES; ACID);
D O I
10.1002/macp.202500033
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends have poor compatibility, and reactive compatibilization is the most effective approach to improve their compatibility. In this study, lysine diisocyanate (LDI) is employed as a reactive compatibilizer to improve the interfacial interactions within PLA/PBAT blends at various ratios (30/70, 50/50, and 70/30). The effects of LDI on the reactive mechanism, thermodynamic behavior, mechanical properties, and phase morphology of the blends are thoroughly investigated. Fourier Transform Infrared Spectroscopy (FTIR) analysis shows that LDI react with the carboxyl terminal group of the PLA and PBAT to form copolymers, which serve as a chemical bridge between the two phases. Thermodynamics behaviors show that LDI reduces the crystallization rate and crystallinity of the blends. Mechanical property studies prove that LDI significantly improves the comprehensive properties of the blends, and the elongation at break, elastic modulus, and tensile strength are optimal for LDI at 2 wt.%. Impact strength even exceeds 90kJ m(-2) for PLA/PBAT (50/50) blends at above 2 wt.% LDI. The morphology studied by Scanning Electron Microscopy (SEM) shows that the addition of LDI can emulsify the two-phase interface, change the sea-island structure into a co-continuous one, and improve the affinity between the two components.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Influence of nanosilica and chain extender on the mechanical behavior of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Khonakdar, Hanieh
    Yazdanbakhsh, Amir Hossein
    Mousavi, Seyed Rasoul
    Ahmadi, Shervin
    Arabi, Hasan
    Ruckdaschel, Holger
    Khonakdar, Hossein Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (44)
  • [32] Selective Localization of Carbon Nanotubes in Poly(lactic acid)/ Poly(butylene adipate-co-terephthalate) Blends with Improved Toughness
    Li, Guili
    Feng, Qiao
    Chen, Shufang
    Yin, Tianxin
    He, Yixin
    Xie, Dan
    Mao, Chenjing
    Shao, Chunguang
    Gao, Peng
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2024, 40 (07): : 63 - 69
  • [33] Morphology and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends with different viscosity ratio
    Lu, Xiang
    Zhao, Jianqing
    Yang, Xiaoyun
    Xiao, Peng
    POLYMER TESTING, 2017, 60 : 58 - 67
  • [34] A study of poly vinyl chloride / poly(butylene adipate-co-terephthalate) blends
    Nor Azowa Ibrahim
    Nazri M. Rahim
    Wan Zin Wan Yunus
    Jamaliah Sharif
    Journal of Polymer Research, 2011, 18 : 891 - 896
  • [35] Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/Nanoparticle Ternary Composites
    Jiang, Long
    Liu, Bo
    Zhang, Jinwen
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (16) : 7594 - 7602
  • [36] Functionalization of poly (butylene adipate-co-terephthalate) and its toughening effect on poly (lactic acid)
    Zhang, Guangxiang
    Li, Hua
    Jiang, Wenxin
    Han, Xiangyan
    Hu, Yuexin
    Han, Yuanyuan
    Zhao, Guiyan
    Feng, Yulin
    EUROPEAN POLYMER JOURNAL, 2024, 206
  • [37] Synergistic reinforcing of poly(lactic acid) by poly(butylene adipate-co-terephthalate) and alumina nanoparticles
    Chen, Jie
    Hu, Rong-Rong
    Jin, Fan-Long
    Park, Soo-Jin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (16)
  • [38] Improvement of compatibility and mechanical properties of the poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and films by reactive extrusion with chain extender
    Li, Xin
    Yan, Xiangyu
    Yang, Jia
    Pan, Hongwei
    Gao, Guanghui
    Zhang, Huiliang
    Dong, Lisong
    POLYMER ENGINEERING AND SCIENCE, 2018, 58 (10): : 1868 - 1878
  • [39] A study of poly vinyl chloride/poly(butylene adipate-co-terephthalate) blends
    Ibrahim, Nor Azowa
    Rahim, Nazri M.
    Yunus, Wan Zin Wan
    Sharif, Jamaliah
    JOURNAL OF POLYMER RESEARCH, 2011, 18 (05) : 891 - 896
  • [40] In Situ Reactive Compatibilization of Thermoplastic Starch/Poly(butylene adipate-co-terephthalate) Blends with Robust Water Resistance Performance
    Kim, Sung Kyu
    Jung, Hyun Wook
    Son, Dasom
    Han, Jae Hyeok
    Kang, DongHo
    Kang, Sang In
    Lee, Junhyuk
    Shim, Jin Kie
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (07) : 5445 - 5453