Detection of particle contamination and lubrication outage in journal bearings in wind turbine gearboxes using surface acoustic wave measurements and machine learning

被引:0
|
作者
Decker, Thomas [1 ]
Jacobs, Georg [1 ]
Raddatz, Malte [1 ]
Roeder, Julian [1 ]
Betscher, Jonas [1 ]
Arneth, Philipp [2 ]
机构
[1] Rhein Westfal TH Aachen, Chair Wind Power Drives, Campus Blvd 61, D-52074 Aachen, Germany
[2] BestSens AG, Jean Paul Weg 2, D-93489 Niederfullbach, Germany
来源
关键词
D O I
10.1007/s10010-025-00784-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Journal bearings are used more and more in wind turbine (WT) gearboxes. Compared to rolling element bearings they are advantageous in terms of power density and reliability. Despite their reliability and theoretically unlimited fatigue life, journal bearings can be damaged by particularly critical operating conditions that do not represent normal WT operation. As journal bearing damage can occur very suddenly in the worst case, continuous monitoring of the bearing's condition is advisable. Particle contamination in the lubricant and an outage of the oil supply can be particularly harmful to the bearing. Condition monitoring systems (CMS) have the potential to detect such critical operating conditions in journal bearings before damage occurs. A detection of these conditions is crucial for preventing bearing damage and thus gearbox failure which results in turbine downtime and yield loss. If failures of journal bearings in WT gearboxes can be avoided through the use of CMS this, in the long term, has the potential to reduce maintenance and repair costs in the field application.In this work the novel surface acoustic wave (SAW) measurement method is presented for the detection of particle contamination and lubrication outage. The SAW method is advantageous compared to conventional monitoring methods such as vibration measurements, as it is based on measuring the propagation behavior of actively introduced SAW into the bearing. This makes the method particularly robust against disturbing noise. For the evaluation of the signals and the detection of the aforementioned operational anomalies a machine learning approach is used. The latter is implemented such that an online monitoring can be performed with only a short latency between data input and evaluation.The presented method was validated on a component test rig for journal bearings. For the experiments the SAW measurement was implemented into the test bearings. In the test campaign, the anomalies were actively induced and the bearing behavior observed over time. This work provides insight into the signals measured during the occurrence of operational anomalies and proves that a lubrication outage and particle contamination can be detected using SAW. Gleitlager finden zunehmend in Getrieben von Windenergieanlagen (WEA) Anwendung. Im Vergleich zu W & auml;lzlagern bieten sie Vorteile hinsichtlich Leistungsdichte und Zuverl & auml;ssigkeit. Trotz ihrer hohen Zuverl & auml;ssigkeit k & ouml;nnen Gleitlager durch kritische Betriebsbedingungen, die vom normalen Betrieb abweichen, besch & auml;digt werden. Da Sch & auml;den an Gleitlagern oft pl & ouml;tzlich auftreten, ist eine kontinuierliche & Uuml;berwachung des Lagers ratsam. Partikelkontamination im Schmiermittel und ein Ausfall der & Ouml;lversorgung sind besonders sch & auml;dlich f & uuml;r das Lager. Zustands & uuml;berwachungssysteme (CMS) k & ouml;nnen solche kritischen Betriebsbedingungen fr & uuml;hzeitig erkennen und helfen, Lagersch & auml;den und damit Getriebesch & auml;den zu verhindern. Durch den Einsatz von CMS lassen sich langfristig Wartungs- und Reparaturkosten senken.In dieser Arbeit wird eine Messmethode mit akustischen Oberfl & auml;chenwellen (Surface Acoustic Waves, SAW) zur Erkennung von Partikelkontamination und & Ouml;lversorgungs-Ausf & auml;llen vorgestellt. Die SAW-Methode bietet im Vergleich zu herk & ouml;mmlichen & Uuml;berwachungsmethoden wie Vibrationsmessungen Vorteile, da sie auf dem Ausbreitungsverhalten aktiv eingef & uuml;hrter SAW im Lager basiert. Dadurch ist die Methode robust gegen & uuml;ber St & ouml;reinfl & uuml;ssen. Zur Auswertung der Signale und zur Erkennung von Betriebsanomalien wird ein maschinelles Lernverfahren eingesetzt, das eine Online-& Uuml;berwachung mit minimaler Verz & ouml;gerung zwischen Dateneingabe und Auswertung erm & ouml;glicht.Die Methode wurde an einem Komponentenpr & uuml;fstand f & uuml;r Gleitlager mit integrierter SAW-Messung validiert. In den Experimenten wurden die Anomalien aktiv induziert und das Lagerverhalten & uuml;ber einen bestimmten Zeitraum beobachtet. Diese Arbeit zeigt auf, dass ein Ausfall der & Ouml;lversorgung sowie Partikelkontamination mithilfe der SAW-Technologie erkannt werden k & ouml;nnen.
引用
收藏
页数:13
相关论文
共 36 条
  • [31] Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning
    Liu, Pengfei
    Xu, Dong
    Li, Jingguo
    Chen, Zhiping
    Wang, Shuaibang
    Leng, Jianxing
    Zhu, Ronghua
    Jiao, Lei
    Liu, Weisheng
    Li, Zhongxiang
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (04): : 1092 - 1103
  • [32] Improving detection of Parkinson's disease with acoustic feature optimization using particle swarm optimization and machine learning
    Hadjaidji, Elmoundher
    Korba, Mohamed Cherif Amara
    Khelil, Khaled
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):
  • [33] A machine learning-based approach for detection of whirl instability and overheating faults in journal bearings using multi-sensor fusion method
    Golmohammadi, A.
    Safizadeh, M. S.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (03)
  • [34] A machine learning-based approach for detection of whirl instability and overheating faults in journal bearings using multi-sensor fusion method
    A. Golmohammadi
    M. S. Safizadeh
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [35] Surface and Underwater Acoustic Source Recognition Using Multi-Channel Joint Detection Method Based on Machine Learning
    Yu, Qiankun
    Zhu, Min
    Zhang, Wen
    Shi, Jian
    Liu, Yan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (08)
  • [36] A machine learning framework for guided wave-based damage detection of rail head using surface-bonded piezo-electric wafer transducers
    Mahajan, Harsh
    Banerjee, Sauvik
    MACHINE LEARNING WITH APPLICATIONS, 2022, 7