Fast-Charging Lithium-Ion Batteries Enabled by Magnetically Aligned Electrodes

被引:0
|
作者
Ju, Zhengyu [1 ,2 ]
Zheng, Tianrui [1 ,2 ]
Checko, Shane [1 ,2 ]
Yu, Guihua [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
关键词
graphene; magnetic field; fast charging; lithium-ion batteries; energy storage; GRAPHENE; NETWORK; DYNAMICS; ORIGIN;
D O I
10.1021/acsnano.4c15915
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the increasing popularity of electric transportation over the past several years, fast-charging lithium-ion batteries are highly demanded for shortening electric vehicles' charging time. Extensive efforts have been made on material development and electrode engineering; however, few of them are scalable and cost-effective enough to be potentially incorporated into the current battery production. Here, we propose a facile magnetic templating method for preparing LiFePO4 (LFP) cathodes with vertically aligned graphene sheets to realize fast-charging properties at a practical loading of 20 mg cm-2. Graphene sheets decorated with Fe3O4 nanoparticles can be responsive to an external magnetic field and can maintain their vertical alignment during the electrode fabrication process. The vertically aligned graphene provides the magnetized LFP electrodes (m-LFP) with simultaneously improved electron and lithium-ion transport properties, achieving 110 and 76 mA h g-1 at 3C and 4C, respectively. Furthermore, magnetized Fe3O4 (m-Fe3O4) anodes were also prepared via the magnetic templating method to vertically align the Fe3O4 nanosheets inside, which outperforms the conventional graphite anodes at a high rate of 3C. Finally, by pairing the magnetized LFP cathode and Fe3O4 anode, we demonstrate the simultaneous fast-charging properties and good cycling stability in the m-LFP||Fe3O4 full cells. This study not only provides an effective methodology for achieving vertically aligned structures which can potentially be incorporated into industrial manufacturing but also brings insightful considerations for designing scalable fast-charging energy storage systems.
引用
收藏
页码:5688 / 5698
页数:11
相关论文
共 50 条
  • [21] Analysis of Graphite Materials for Fast-Charging Capabilities in Lithium-Ion Batteries
    Kirner, J.
    Zhang, L.
    Qin, Y.
    Su, X.
    Li, Y.
    Lu, W.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 33 - 44
  • [22] Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries
    Ding, Xiaobo
    Huang, Qianhui
    Xiong, Xunhui
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)
  • [23] The fast-charging properties of micro lithium-ion batteries for smart devices
    Gao, Xianggang
    Zhou, Hao
    Li, Shihao
    Chang, ShiLei
    Lai, Yanqing
    Zhang, Zhian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 141 - 150
  • [24] Gradient porosity electrodes for fast charging lithium-ion batteries
    Yang, Jian
    Li, Yejing
    Mijailovic, Aleksandar
    Wang, Guanyi
    Xiong, Jie
    Mathew, Kevin
    Lu, Wenquan
    Sheldon, Brian W.
    Wu, Qingliu
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (22) : 12114 - 12124
  • [25] Fracture of electrodes in lithium-ion batteries caused by fast charging
    Zhao, Kejie
    Pharr, Matt
    Vlassak, Joost J.
    Suo, Zhigang
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [26] Insight into pulse-charging for lithium plating-free fast-charging lithium-ion batteries
    Jeong, Yeon Tae
    Shin, Hong Rim
    Lee, Jinhong
    Ryu, Myung-Hyun
    Choi, Sinho
    Kim, Hansung
    Jung, Kyu-Nam
    Lee, Jong-Won
    ELECTROCHIMICA ACTA, 2023, 462
  • [27] Toward fast-charging lithium-ion batteries: Quantitatively tracking lithium plating on graphite
    Kuphal, Robert
    Fang, Chengcheng
    MATTER, 2023, 6 (08) : 2547 - 2549
  • [28] Designing Electrolytes With Controlled Solvation Structure for Fast-Charging Lithium-Ion Batteries
    Kautz, David J.
    Cao, Xia
    Gao, Peiyuan
    Matthews, Bethany E.
    Xu, Yaobin
    Han, Kee Sung
    Omenya, Fredrick
    Engelhard, Mark H.
    Jia, Hao
    Wang, Chongmin
    Zhang, Ji-Guang
    Xu, Wu
    ADVANCED ENERGY MATERIALS, 2023, 13 (35)
  • [29] Fast-charging graphite anode for lithium-ion batteries: Fundamentals, strategies, and outlooks
    Yan, Xin
    Jiao, Jinying
    Ren, Jingke
    Luo, Wen
    Mai, Liqiang
    APPLIED PHYSICS LETTERS, 2024, 124 (04)
  • [30] Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries
    Zhong C.
    Weng S.
    Wang Z.
    Zhan C.
    Wang X.
    Nano Energy, 2023, 117