Bow varieties - geometry, combinatorics, characteristic classes

被引:0
|
作者
Rimanyi, Richard [1 ]
Shou, Yiyan [1 ]
机构
[1] Univ North Carolina, Dept Math, Chapel Hill, NC 27515 USA
关键词
QUIVER; INSTANTONS; MATRICES; DUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cherkis bow varieties are believed to be the set of spaces where 3d mirror symmetry for characteristic classes can be observed. We describe geometric structures on a large class of Cherkis bow varieties by developing the necessary combinatorial presentations, including binary contingency tables and skein diagrams. We make the first steps toward the sought after statement for 3d mirror symmetry for characteristic classes by conjecturing a formula for cohomological stable envelopes. Additionally we provide an account of the full statement, with examples, for elliptic stable envelopes.
引用
收藏
页码:507 / 575
页数:69
相关论文
共 50 条
  • [31] Combinatorics and quotients of toric varieties
    Hu, Y
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (02) : 151 - 174
  • [32] Combinatorics in affine flag varieties
    Parkinson, James
    Ram, Arun
    Schwer, Christoph
    JOURNAL OF ALGEBRA, 2009, 321 (11) : 3469 - 3493
  • [33] Dynamical combinatorics and torsion classes
    Barnard, Emily
    Todorov, Gordana
    Zhu, Shijie
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (09)
  • [34] Lie-Cartan pairs and characteristic classes in noncommutative geometry
    Popelensky, TY
    Solovjev, YP
    PROCEEDINGS OF THE WORKSHOP ON CONTEMPORARY GEOMETRY AND RELATED TOPICS, 2004, : 351 - 373
  • [36] Computations in formal symplectic geometry and characteristic classes of moduli spaces
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    QUANTUM TOPOLOGY, 2015, 6 (01) : 139 - 182
  • [37] Characteristic classes and Hilbert–Poincaré series for perverse sheaves on abelian varieties
    Thomas Krämer
    Selecta Mathematica, 2016, 22 : 1337 - 1356
  • [38] Characteristic classes of symmetric products of complex quasi-projective varieties
    Cappell, Sylvain E.
    Maxim, Laurentiu
    Schuermann, Joerg
    Shaneson, Julius L.
    Yokura, Shoji
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 728 : 35 - 63
  • [39] Cycle classes on abelian varieties and the geometry of the Abel-Jacobi map
    Voisin, Claire
    arXiv, 2022,
  • [40] GEOMETRY OF SEVERI VARIETIES .2. INDEPENDENCE OF DIVISOR CLASSES AND EXAMPLES
    DIAZ, S
    HARRIS, J
    LECTURE NOTES IN MATHEMATICS, 1988, 1311 : 23 - 50