Enhancing photoactivity of defective g-C3N4via self-polarization effect of tourmaline for CO2 reduction

被引:0
|
作者
Wang, Jiangpeng [1 ]
Huang, Chao [1 ]
Liu, Deng [1 ]
Peng, Huihui [1 ]
Luo, Qiong [1 ]
Yang, Dimin [1 ]
Yu, Xuelian [1 ]
Hu, Yingmo [1 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Engn Res Ctr,Minist Educ Geol Carbon Storage & Low, Beijing 100083, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
D O I
10.1039/d4ta06709f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphite carbon nitride (g-C3N4) has been extensively studied as a non-metallic catalyst for photocatalytic reduction of CO2. However, its efficiency and selectivity in CO2 reduction still require further enhancement. In this study, we have incorporated the silicate mineral tourmaline, known for its spontaneous polarization properties, into g-C3N4 with nitrogen defects. The novel composite catalyst, named TM/CN(NH), was synthesized by a two-step method of high-temperature calcination. The optimal composite ratio of the sample (25TM/CN(NH)) can achieve a CO yield rate of 118.17 mu mol g-1 h-1, which is 6.4 times that of the bulk g-C3N4(CN) and 2.9 times that of g-C3N4 containing N defects (CN(NH)). Our findings indicate that the self-polarization effect of tourmaline and the introduction of nitrogen vacancies can remarkably upgrade the photocatalytic efficiency of g-C3N4. On one hand, the nitrogen vacancies can broaden the light absorption range of g-C3N4, optimize its band gap structure, and improve its efficiency in utilizing light energy. On the other hand, the electric field generated by the self-polarization effect of tourmaline can enhance the migration of electrons in the lattice of g-C3N4, promote the migration and separation of electrons and holes, and thus increase the reduction efficiency of CO2 by g-C3N4. This research innovatively integrates cost-effective mineral materials into g-C3N4, significantly elevating the photocatalytic capabilities of g-C3N4. Furthermore, it paves the way for the rational design of abundant and inexpensive catalysts, aiming to achieve efficient photocatalytic carbon dioxide reduction.
引用
收藏
页码:340 / 347
页数:8
相关论文
共 50 条
  • [1] Dual role of g-C3N4 microtubes in enhancing photocatalytic CO2 reduction of Co3O4 nanoparticles
    Cao, Hui
    Yan, Yumeng
    Wang, Yuan
    Chen, Fei-Fei
    Yu, Yan
    CARBON, 2023, 201 : 415 - 424
  • [2] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [3] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)
  • [4] Core-shell engineered g-C3N4 @ NaNbO3 for enhancing photocatalytic reduction of CO2
    Wang, Shuo
    Yin, Haotian
    Wang, Lei
    Ding, Jing
    Zhang, Jinfeng
    Wan, Hui
    Guan, Guofeng
    NANOTECHNOLOGY, 2024, 35 (19)
  • [5] Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction
    Ma, Liang
    Li, Zhou
    Jiang, Zhiqiang
    Wu, Xiaofeng
    Chang, Shixin
    Carabineiro, A. C.
    Lv, Kangle
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (11)
  • [6] Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4
    Cao, Shaowen
    Li, Yao
    Zhu, Bicheng
    Jaroniec, Mietek
    Yu, Jiaguo
    JOURNAL OF CATALYSIS, 2017, 349 : 208 - 217
  • [7] Synergistic effect of Cu and Ru decoration on g-C3N4 for electrocatalytic CO2 reduction
    Hu, Chechia
    Liu, Miao-Ting
    Sakai, Arisu
    Yoshida, Masaaki
    Lin, Kun-Yi Andrew
    Huang, Chun-Chieh
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 115 : 329 - 338
  • [8] Photo reduction of CO2 to CH4 on g-C3N4: the Effect of Concentrating Light and Pretreatment
    Li, Dong
    Fang, Xiaoxiang
    Liu, Huayan
    Lu, Hanfeng
    Zhang, Zekai
    MATERIALS SCIENCE, ENERGY TECHNOLOGY AND POWER ENGINEERING II (MEP2018), 2018, 1971
  • [9] A review on photocatalytic CO2 reduction of g-C3N4 and g-C3N4-based photocatalysts modified by CQDs
    Zhao, Yuan
    Yang, Dongyin
    Yu, Cailian
    Yan, Hong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):
  • [10] NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction
    Tao, Feifei
    Dong, Yali
    Yang, Lingang
    APPLIED SURFACE SCIENCE, 2023, 638