Single-atom nanozymes: Recent advances and perspectives toward application in food analysis

被引:0
|
作者
Wang, Qiuping [1 ]
Wu, Yuen [2 ]
Mao, Yu [1 ]
Zheng, Lei [1 ]
机构
[1] Hefei Univ Technol, Sch Food & Biol Engn, Key Lab Agr Prod Proc Anhui Prov, Hefei 230009, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Peoples R China
关键词
Single-atom nanozymes; Modulation; Catalysis; Food analysis; Sensors; CATALYSIS; SENSORS; ENZYME;
D O I
10.1016/j.tifs.2025.104905
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Background: Ensuring food safety has become a global priority due to increasing consumer demand for green, safe and nutritious food, necessitating advanced technologies for precise food quality evaluation. Nanozymes, nanomaterials with enzyme-mimicking catalytic properties, have attracted attention for their cost-effectiveness, stability and tunable features. However, limitations such as uncertain active sites and low catalytic efficiency hinder their broader application. Single-atom nanozymes (SAzymes) overcome these challenges with maximized atom utilization and well-defined structures, enabling the precise replication of metalloenzymes active centers and spatial configurations at the atomic scale. This design significantly enhances catalytic performance, positioning SAzymes as a promising frontier in food analysis. Scope and approach: This review discusses the synthesis strategies of SAzymes and their influence on biocatalytic performance, emphasizing metal active center selection and coordination shells modulation. It highlights key advancements in SAzyme applications for evaluating food nutrients and detecting food safety. Two major challenges including low catalytic efficiency in complex food matrices and limited understanding of catalytic mechanisms are examined. Strategic pathways to overcome these challenges are proposed, promoting the integration of SAzymes into food analysis. Key finds and conclusions: Nanozymes have garnered extensive attention due to their enzyme-like activity and robustness, but face challenges including complex compositions, low active site density and inadequate substrate specificity. In contrast, SAzymes with maximum atomic efficiency and highly tunable structure characteristics exhibit superior catalytic activities and specificity. These attributes are pivotal for advancing rapid, sensitive and on-site food analysis. This review offers fresh insights and practical guidance, shedding light on the expanding potential of SAzymes in food assay applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction
    Han, Junxing
    Bian, Juanjuan
    Sun, Chunwen
    RESEARCH, 2020, 2020
  • [32] Recent advances of single-atom electrocatalysts for hydrogen evolution reaction
    Ma, Zhixue
    Niu, Lijuan
    Jiang, Wenshuai
    Dong, Chenxi
    Liu, Guohua
    Qu, Dan
    An, Li
    Sun, Zaicheng
    JOURNAL OF PHYSICS-MATERIALS, 2021, 4 (04):
  • [33] Recent Advances of Single-atom Catalysts for Electro-catalysis
    Xu Guangyuan
    Liu Qin
    Yan Huan
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (05) : 1146 - 1150
  • [34] Recent advances in metal single-atom catalysts for ammonia electrosynthesis
    Lu, Zhaole
    Zhang, Jijie
    Wang, Yuting
    Yu, Yifu
    Kong, Lingjun
    MATERIALS HORIZONS, 2025,
  • [35] Recent Advances in Single-Atom Catalysts for Photoelectrocatalytic Water Splitting
    Yang, Jiao
    Zheng, Xiaoyang
    Shah, Syed Shoaib Ahmad
    Wang, Chao
    Li, Xueyao
    Yan, Zhishuo
    Peng, Lishan
    CARBON ENERGY, 2025,
  • [36] Recent advances in the design of single-atom electrocatalysts by defect engineering
    Li, Wei
    Chen, Zhikai
    Jiang, Xiaoli
    Jiang, Jinxia
    Zhang, Yagang
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [37] Single-atom site catalysts for environmental remediation: Recent advances
    Cai, Tao
    Teng, Zhenzhen
    Wen, Yanjun
    Zhang, Huayang
    Wang, Shaobin
    Fu, Xijun
    Song, Lu
    Li, Mi
    Lv, Junwen
    Zeng, Qingyi
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 440
  • [38] Recent Advances of Single-atom Catalysts for Electro-catalysis
    Guangyuan Xu
    Qin Liu
    Huan Yan
    Chemical Research in Chinese Universities, 2022, 38 : 1146 - 1150
  • [39] Recent advances in single-atom catalysts (SACs) for photocatalytic applications
    Wei, Tingcha
    Zhou, Jing
    An, Xiaoqiang
    MATERIALS REPORTS: ENERGY, 2024, 4 (03):
  • [40] Recent progress in noble metal-based single-atom nanozymes for biomedical applications
    Zhao, Jingyu
    Han, Fangqin
    Cheng, Chunfang
    Wang, Huixin
    Zhao, Guanhui
    Jia, Peng
    Zhang, Nuo
    Wang, Yaoguang
    Zhang, Jie
    Wei, Qin
    MICROCHEMICAL JOURNAL, 2024, 207