Efficient seismic noise suppression for microseismic data using an adaptive TMSST approach

被引:0
|
作者
Wang, Xulin [1 ]
Lv, Minghui [2 ]
机构
[1] Ocean Univ China, Coll Marine Geosci, Qingdao 266100, Shandong, Peoples R China
[2] Beijing Zhongke Haixun Digital Technol Co Ltd, Qingdao Branch, Qingdao 266100, Shandong, Peoples R China
关键词
Time-reassigned multisnchrosqueezing transform (TMSST); Microseismic data; Impulse noise suppression; Stationarity test; EMPIRICAL MODE DECOMPOSITION; SYNCHROSQUEEZING TRANSFORM; ALGORITHM; SVD;
D O I
10.1007/s11600-024-01518-w
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hydraulic fracturing is an effective reservoir stimulation technique. Microseismic monitoring technology can effectively obtain information from within the reservoir. In this process, the effective extraction of microseismic data is crucial, but monitoring data is often interfered with by various noises, thus necessitating noise suppression processing. Currently, commonly used noise suppression methods mainly target random noise and often overlook the possibility of impulse noise in microseismic data. To address this issue, this paper proposes a method that combines periodic noise suppression with time-reassigned multisynchrosqueezing transform (TMSST). The method first highlights impulse noise by suppressing periodic noise and then adaptively determines the optimal parameters of the TMSST algorithm through stability judgment and peak value searching. In simulation and experimental tests, the proposed method was compared with the traditional ensemble empirical mode decomposition (EEMD) method. The results show that in an environment with strong background noise, the proposed algorithm performs excellently in suppressing strong impulse noise in hydraulic fracturing microseismic data.
引用
收藏
页码:2477 / 2494
页数:18
相关论文
共 50 条
  • [31] Random noise suppression method of seismic data based on CycleGAN
    Wu X.
    Zhang H.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (05): : 958 - 968
  • [32] Identification and suppression of background noise on point receiver seismic data
    Li, Yanpeng
    Chang, Xu
    Wang, Ximing
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2014, 49 (04): : 648 - 651
  • [33] Seismic Random Noise Suppression by Using Adaptive Fractal Conservation Law Method Based on Stationarity Testing
    Zhong, Tie
    Cheng, Ming
    Dong, Xintong
    Li, Yue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3588 - 3600
  • [34] Noise reduction for desert seismic data using spectral kurtosis adaptive bandpass filter
    Haitao Ma
    Zebin Qian
    Yue Li
    Hongbo Lin
    Dan Shao
    Baojun Yang
    Acta Geophysica, 2019, 67 : 123 - 131
  • [35] Noise reduction for desert seismic data using spectral kurtosis adaptive bandpass filter
    Ma, Haitao
    Qian, Zebin
    Li, Yue
    Lin, Hongbo
    Shao, Dan
    Yang, Baojun
    ACTA GEOPHYSICA, 2019, 67 (01) : 123 - 131
  • [36] Suppression of strong random noise in seismic data by using time-frequency peak filtering
    LI Yue
    YANG BaoJun
    LIN HongBo
    MA HaiTao
    NIE PengFei
    ScienceChina(EarthSciences), 2013, 56 (07) : 1200 - 1208
  • [37] Suppression of strong random noise in seismic data by using time-frequency peak filtering
    Li Yue
    Yang BaoJun
    Lin HongBo
    Ma HaiTao
    Nie PengFei
    SCIENCE CHINA-EARTH SCIENCES, 2013, 56 (07) : 1200 - 1208
  • [38] Optimized suppression of coherent noise from seismic data using the Karhunen-Loeve transform
    Montagne, Raul
    Vasconcelos, Giovani L.
    PHYSICAL REVIEW E, 2006, 74 (01):
  • [39] Self-Supervised Seismic Swell Noise Suppression From Noisy Seismic Data
    Xu, Weiwei
    Lipari, Vincenzo
    Bestagini, Paolo
    Chen, Wenchao
    Tubaro, Stefano
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [40] Suppression of strong random noise in seismic data by using time-frequency peak filtering
    Yue Li
    BaoJun Yang
    HongBo Lin
    HaiTao Ma
    PengFei Nie
    Science China Earth Sciences, 2013, 56 : 1200 - 1208