Efficient seismic noise suppression for microseismic data using an adaptive TMSST approach

被引:0
|
作者
Wang, Xulin [1 ]
Lv, Minghui [2 ]
机构
[1] Ocean Univ China, Coll Marine Geosci, Qingdao 266100, Shandong, Peoples R China
[2] Beijing Zhongke Haixun Digital Technol Co Ltd, Qingdao Branch, Qingdao 266100, Shandong, Peoples R China
关键词
Time-reassigned multisnchrosqueezing transform (TMSST); Microseismic data; Impulse noise suppression; Stationarity test; EMPIRICAL MODE DECOMPOSITION; SYNCHROSQUEEZING TRANSFORM; ALGORITHM; SVD;
D O I
10.1007/s11600-024-01518-w
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hydraulic fracturing is an effective reservoir stimulation technique. Microseismic monitoring technology can effectively obtain information from within the reservoir. In this process, the effective extraction of microseismic data is crucial, but monitoring data is often interfered with by various noises, thus necessitating noise suppression processing. Currently, commonly used noise suppression methods mainly target random noise and often overlook the possibility of impulse noise in microseismic data. To address this issue, this paper proposes a method that combines periodic noise suppression with time-reassigned multisynchrosqueezing transform (TMSST). The method first highlights impulse noise by suppressing periodic noise and then adaptively determines the optimal parameters of the TMSST algorithm through stability judgment and peak value searching. In simulation and experimental tests, the proposed method was compared with the traditional ensemble empirical mode decomposition (EEMD) method. The results show that in an environment with strong background noise, the proposed algorithm performs excellently in suppressing strong impulse noise in hydraulic fracturing microseismic data.
引用
收藏
页码:2477 / 2494
页数:18
相关论文
共 50 条
  • [1] Using geometric mode decomposition for the background noise suppression on microseismic data
    Abbasi, Salman
    Jayaram, Vikram
    Akram, Jubran
    Alam, Md Iftekhar
    Yu, Siwei
    GEOPHYSICAL PROSPECTING, 2023, 71 (08) : 1420 - 1437
  • [2] Adaptive noise estimation and suppression for improving microseismic event detection
    Mousavi, S. Mostafa
    Langston, Charles A.
    JOURNAL OF APPLIED GEOPHYSICS, 2016, 132 : 116 - 124
  • [3] Seismic random noise suppression using an adaptive nonlocal means algorithm
    Shuai Shang
    Li-Guo Han
    Qing-Tian Lv
    Chen-Qing Tan
    Applied Geophysics, 2013, 10 : 33 - 40
  • [4] Seismic random noise suppression using an adaptive nonlocal means algorithm
    Shang Shuai
    Han Li-Guo
    Lv Qing-Tian
    Tan Chen-Qing
    APPLIED GEOPHYSICS, 2013, 10 (01) : 33 - 40
  • [5] An effective noise-suppression technique for surface microseismic data
    Forghani-Arani, Farnoush
    Willis, Mark
    Haines, Seth S.
    Batzle, Mike
    Behura, Jyoti
    Davidson, Michael
    GEOPHYSICS, 2013, 78 (06) : KS85 - KS95
  • [6] An effective noise-suppression technique for surface microseismic data
    Forghani-Arani, Farnoush
    Willis, Mark
    Haines, Seth S.
    Batzle, Mike
    Behura, Jyoti
    Davidson, Michael
    Geophysics, 2012, 78 (06)
  • [7] An effective noise-suppression technique for surface microseismic data
    1600, Society of Exploration Geophysicists (78):
  • [8] Low-frequency noise attenuation in seismic and microseismic data using mathematical morphological filtering
    Huang W.
    Wang R.
    Zu S.
    Chen Y.
    Chen, Yangkang (chenyk2016@gmail.com), 1600, Oxford University Press (211): : 1296 - 1318
  • [9] Low-frequency noise attenuation in seismic and microseismic data using mathematical morphological filtering
    Huang, Weilin
    Wang, Runqiu
    Zu, Shaohuan
    Chen, Yangkang
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (03) : 1728 - 1749
  • [10] An efficient approach to noise suppression in adaptive filtering subject to output envelope constraints
    Zheng, WX
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : D182 - D185