An Open-source Adjoint-based Field Inversion Tool for Data-driven RANS Modelling

被引:0
|
作者
Bidar, Omid [1 ,2 ]
He, Ping [3 ]
Anderson, Sean [1 ]
Qin, Ning [2 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Dept Mech Engn, Sheffield S10 2TN, S Yorkshire, England
[3] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA
来源
基金
英国工程与自然科学研究理事会;
关键词
FLOWS;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents an open-source tool for using high-fidelity simulation or experimental data to improve steady-state Reynolds-averaged Navier-Stokes (RANS) turbulence models. The field inversion approach employed, involves perturbations of the production term in the model transport equation through a spatial field and the iterative optimisation of this field such that the error between model prediction and data is minimised. This highly dimensional inverse problem requires the adjoint method for efficient gradient-based optimisation. It has been successfully applied to reconstruct turbulent mean flows with limited data. However, the implementation is a high barrier to entry as the intrusive development process involves the CFD solver, the adjoint solutions, and the optimiser, making it a time-consuming and laborious task. In this work we integrate open-source codes to enable a flexible framework for field inversion application, open to all interested CFD practitioners. The software capabilities are demonstrated using three flow cases where traditional turbulence models (Spalart-Allmaras andWilcox k - omega for this work) perform poorly due to flow separation and adverse pressure gradients. The data used include wind-tunnel experiments and direct numerical simulations, and field inversion scenarios considered integral (e.g. lift coefficient), surface (e.g. skin friction), and volume (e.g. velocity profiles) data, in order of decreasing sparsity.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Matecho: An Open-Source Tool for Processing Fisheries Acoustics Data
    Yannick Perrot
    Patrice Brehmer
    Jérémie Habasque
    Gildas Roudaut
    Nolwenn Behagle
    Abdoulaye Sarré
    Anne Lebourges-Dhaussy
    Acoustics Australia, 2018, 46 : 241 - 248
  • [32] OpenRefocus: an open-source Qt-based tool for light field parallel refocusing
    Gu, Yuanjie
    Yu, Miao
    Ai, Lingyu
    Jiang, Zhilong
    He, Xiaoliang
    Kong, Yan
    Liu, Cheng
    Wang, Shouyu
    OPTICAL ENGINEERING, 2022, 61 (06)
  • [33] An Open-Source Tool For The Transcription of Paper-Spreadsheet Data
    Ghassemi, Mohammad M.
    Jarvis, Willow
    Alhanai, Tuka
    Brown, Emery N.
    Mark, Roger G.
    Westover, M. Brandon
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 935 - 941
  • [34] Development of an Open-Source Tool for UAV Photogrammetric Data Processing
    Mayank Sharma
    S. Raghavendra
    Shefali Agrawal
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 659 - 664
  • [35] Matecho: An Open-Source Tool for Processing Fisheries Acoustics Data
    Perrot, Yannick
    Brehmer, Patrice
    Habasque, Jeremie
    Roudaut, Gildas
    Behagle, Nolwenn
    Sarre, Abdoulaye
    Lebourges-Dhaussy, Anne
    ACOUSTICS AUSTRALIA, 2018, 46 (02) : 241 - 248
  • [36] Development of an Open-Source Tool for UAV Photogrammetric Data Processing
    Sharma, Mayank
    Raghavendra, S.
    Agrawal, Shefali
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (03) : 659 - 664
  • [37] GridTool: An open-source tool to convert electricity grid data
    Gaugl R.
    Wogrin S.
    Bachhiesl U.
    Frauenlob L.
    SoftwareX, 2023, 21
  • [38] Variational assimilation of sparse time-averaged data for efficient adjoint-based optimization of unsteady RANS simulations
    Plogmann, Justin
    Brenner, Oliver
    Jenny, Patrick
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [39] Improving uptake of simulation in healthcare: User-driven development of an open-source tool for modelling patient flow
    Tyler, J. M. B.
    Murch, B. J.
    Vasilakis, C.
    Wood, R. M.
    JOURNAL OF SIMULATION, 2023, 17 (06) : 765 - 782
  • [40] Data-driven RANS closures for improving mean field calculation of separated flows
    Chen, Zhuo
    Deng, Jian
    FRONTIERS IN PHYSICS, 2024, 12