Phase diagram and elementary excitations of strongly interacting droplets with non-local interactions

被引:0
|
作者
Lebek, Maciej [1 ,2 ]
Kopycinski, Jakub [2 ]
Gorecki, Wojciech [1 ]
Oldziejewski, Rafal [3 ,4 ]
Pawlowski, Krzysztof [2 ]
机构
[1] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[4] Univ Warsaw, Ctr Quantum Opt Technol, Ctr New Technol, S Banacha 2c, PL-02097 Warsaw, Poland
关键词
quantum droplets; elementary excitations; one-dimensional systems; ACCURATE;
D O I
10.1088/1361-6455/adba9d
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A one-dimensional bosonic gas with strong contact repulsion and attractive non-local interactions may form a quantum droplet with a flat-top density profile. We focus on a system in the Tonks-Girardeau limit of infinitely strong contact repulsion. We show that the main system features are the same for a broad class of non-local interaction potentials. Then, we focus on a limiting case, the one of slowly varying density profiles, to find approximate formulas for the surface and bulk energies of a droplet. We further characterise the system by numerically finding the excitation spectrum. It consists of two families: phononic-like excitations inside droplets and scattering modes. Analysis within the linearised regime is supplemented with the full, nonlinear dynamics of small perturbations.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Phase diagram of non-local chiral quark models under compact star conditions
    Dumm, D. Gomez
    Grunfeld, A. G.
    Scoccola, N. N.
    VI LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS, 2007, 884 : 372 - +
  • [22] SEPARABLE NON-LOCAL INTERACTIONS IN NUCLEI
    NARASIMHAM, VL
    PANDYA, SP
    SHAH, SK
    NUCLEAR PHYSICS, 1962, 33 (04): : 529 - &
  • [23] Elastodynamic interactions in thermoelastic diffusion including non-local and phase lags
    Sharma, Saurav
    Marin, Marin
    Altenbach, Holm
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (01):
  • [24] Interface Conditions for a Phase Field Model with Anisotropic and Non-Local Interactions
    Chen, Xinfu
    Caginalp, Gunduz
    Esenturk, Emre
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) : 349 - 372
  • [25] Condensate dynamics with non-local interactions
    Lentz, Erik W.
    Quinn, Thomas R.
    Rosenberg, Leslie J.
    NUCLEAR PHYSICS B, 2020, 952
  • [26] SCATTERING BY SEPARABLE NON-LOCAL INTERACTIONS
    MOISEIWITSCH, BL
    JOURNAL OF PHYSICS PART A GENERAL, 1969, 2 (03): : 293 - +
  • [27] LEVINSON THEOREM FOR NON-LOCAL INTERACTIONS
    ZHONG, QM
    DAI, AY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : 2085 - 2093
  • [28] Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions
    Kozma, R
    Puljic, M
    Balister, P
    Bollobás, B
    Freeman, WJ
    BIOLOGICAL CYBERNETICS, 2005, 92 (06) : 367 - 379
  • [29] ON NON-LOCAL EFFECTS IN STRONG INTERACTIONS
    PROKHOROV, LV
    NUCLEAR PHYSICS, 1965, 64 (04): : 694 - +
  • [30] Non-local relativistic δ-shell interactions
    Heriban, Lukas
    Tusek, Matej
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)