Regulating the Mott-Hubbard Splitting for High-Performance Co-Free Li-Rich Mn-Based Oxide Cathode

被引:0
|
作者
Wang, Tianyu [1 ,2 ,3 ]
Wang, Ruoyu [1 ]
Zhang, Jicheng [1 ]
Zhao, Guangxue [2 ,3 ]
Yin, Wen [4 ]
Zhang, Nian [5 ]
Zheng, Lirong [6 ]
Liu, Xiangfeng [1 ,2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Coll Sino Danish, Beijing 100049, Peoples R China
[3] Sino Danish Ctr Educ & Res, Beijing 100049, Peoples R China
[4] Spallation Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[6] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
关键词
Co-free Lithium rich cathode; d-d Coulomb interaction; layered oxide; lithium-ion battery; oxygen anionic redox; OXYGEN REDOX; ELECTRONIC-STRUCTURE; BATTERY; ORIGIN; GAP;
D O I
10.1002/adfm.202423843
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Co-free Li-rich Mn-based layered oxides attract great attention as next-generation cathodes due to high specific capacity and low cost. However, their practical applications are hindered by the structural damage and poor cycling stability caused by the irreversible oxygen anion redox (OAR). Herein, a distinct strategy for regulating Mott-Hubbard splitting to address the detrimental issues is proposed. Introducing cations with specific electronic properties into the Li layer and transition metal (TM) layer decreases the Mott-Hubbard splitting energy (U) of TM cations, which promotes the electron removal and optimizes the band structure. This causes the antibonding band (M & horbar;O)* to rise and reduces its overlap with O2p band, thereby simultaneously enhancing the redox activity of TMs and the reversibility of OAR. The specific capacity, rate capability, and capacity retention are all significantly improved (255 mAh g-1 vs 223 mAh g-1 at 0.1C;197 mAh g-1 vs168 mAh g-1 at 1C;147 mAh g-1 vs115 mAh g-1 at 5 C; 93.2% vs 75.5% at 1C after 400 cycles). The oxygen release and voltage decay are also mitigated (92.4% vs 85.6% at 1C after 400 cycles). Moreover, a quantitative method to estimate U value is established for the first time. These findings provide insights into the intrinsic interaction mechanism of anions and cations redox and provide guidance for designing high-performance cathodes.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Stabilized Li-rich Mn-based oxide cathode particles with an artificial surface in-Situ-preprocessing
    Zhang, Jian
    Feng, Yuwen
    Ji, Yunfeng
    Gao, Chao
    Chen, Buming
    He, Yapeng
    Guo, Jun
    Guo, Zhongcheng
    Huang, Hui
    JOURNAL OF POWER SOURCES, 2024, 613
  • [22] Pseudo-Bonding and Electric-Field Harmony for Li-Rich Mn-Based Oxide Cathode
    Chen, Jun
    Zou, Guoqiang
    Deng, Wentao
    Huang, Zhaodong
    Gao, Xu
    Liu, Cheng
    Yin, Shouyi
    Liu, Huanqing
    Deng, Xinglan
    Tian, Ye
    Li, Jiayang
    Wang, Chiwei
    Wang, Di
    Wu, Hanwen
    Yang, Li
    Hou, Hongshuai
    Ji, Xiaobo
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)
  • [23] Regulation of Interfacial Lattice Oxygen Activity by Full-Surface Modification Engineering towards Long Cycling Stability for Co-Free Li-Rich Mn-Based Cathode
    Guo, Weibin
    Zhang, Yinggan
    Lin, Liang
    Liu, Yuanyuan
    Fan, Mengjian
    Gao, Guiyang
    Wang, Shihao
    Sa, Baisheng
    Lin, Jie
    Luo, Qing
    Qu, Baihua
    Wang, Laisen
    Shi, Ji
    Xie, Qingshui
    Peng, Dong-Liang
    SMALL, 2023, 19 (21)
  • [24] Enhancing performances of Co-free Li-rich Mn-based layered cathode materials via interface modification of multiple-functional Mn3O4 shell
    Wu, Chao
    Cao, Shuang
    Li, Heng
    Li, Zhi
    Chen, Gairong
    Guo, Xiaowei
    Chang, Baobao
    Bai, Yansong
    Wang, Xianyou
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [25] Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials
    Wang, Bo
    Cui, Jing
    Li, Zhaojin
    Wang, Huan
    Zhang, Di
    Wang, Qiujun
    Sun, Huilan
    Hu, Zhilin
    Journal of Alloys and Compounds, 2022, 929
  • [26] Constructing high performance Li-rich Mn-based cathode via surface phase structure controlling and ion doping
    Cao, Shuang
    Chen, Jiarui
    Li, Heng
    Li, Zhi
    Guo, Changmeng
    Chen, Gairong
    Guo, Xiaowei
    Wang, Xianyou
    JOURNAL OF POWER SOURCES, 2023, 555
  • [27] Effects of Mg Doping at Different Positions in Li-Rich Mn-Based Cathode Material on Electrochemical Performance
    Makhonina, Elena
    Pechen, Lidia
    Medvedeva, Anna
    Politov, Yury
    Rumyantsev, Aleksander
    Koshtyal, Yury
    Volkov, Vyacheslav
    Goloveshkin, Alexander
    Eremenko, Igor
    NANOMATERIALS, 2022, 12 (01)
  • [28] Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials
    Wang, Bo
    Cui, Jing
    Li, Zhaojin
    Wang, Huan
    Zhang, Di
    Wang, Qiujun
    Sun, Huilan
    Hu, Zhilin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 929
  • [29] Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective
    Guo, Weibin
    Weng, Zhangzhao
    Zhou, Chongyang
    Han, Min
    Shi, Naien
    Xie, Qingshui
    Peng, Dong-Liang
    INORGANICS, 2024, 12 (01)
  • [30] A Gradient Doping Strategy toward Superior Electrochemical Performance for Li-Rich Mn-Based Cathode Materials
    Yang, Puheng
    Zhang, Shichao
    Wei, Ziwei
    Guan, Xianggang
    Xia, Jun
    Huang, Danyang
    Xing, Yalan
    He, Jia
    Wen, Bohua
    Liu, Bin
    Xu, Huaizhe
    SMALL, 2023, 19 (20)