Regulating the Mott-Hubbard Splitting for High-Performance Co-Free Li-Rich Mn-Based Oxide Cathode

被引:0
|
作者
Wang, Tianyu [1 ,2 ,3 ]
Wang, Ruoyu [1 ]
Zhang, Jicheng [1 ]
Zhao, Guangxue [2 ,3 ]
Yin, Wen [4 ]
Zhang, Nian [5 ]
Zheng, Lirong [6 ]
Liu, Xiangfeng [1 ,2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Coll Sino Danish, Beijing 100049, Peoples R China
[3] Sino Danish Ctr Educ & Res, Beijing 100049, Peoples R China
[4] Spallation Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[6] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
关键词
Co-free Lithium rich cathode; d-d Coulomb interaction; layered oxide; lithium-ion battery; oxygen anionic redox; OXYGEN REDOX; ELECTRONIC-STRUCTURE; BATTERY; ORIGIN; GAP;
D O I
10.1002/adfm.202423843
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Co-free Li-rich Mn-based layered oxides attract great attention as next-generation cathodes due to high specific capacity and low cost. However, their practical applications are hindered by the structural damage and poor cycling stability caused by the irreversible oxygen anion redox (OAR). Herein, a distinct strategy for regulating Mott-Hubbard splitting to address the detrimental issues is proposed. Introducing cations with specific electronic properties into the Li layer and transition metal (TM) layer decreases the Mott-Hubbard splitting energy (U) of TM cations, which promotes the electron removal and optimizes the band structure. This causes the antibonding band (M & horbar;O)* to rise and reduces its overlap with O2p band, thereby simultaneously enhancing the redox activity of TMs and the reversibility of OAR. The specific capacity, rate capability, and capacity retention are all significantly improved (255 mAh g-1 vs 223 mAh g-1 at 0.1C;197 mAh g-1 vs168 mAh g-1 at 1C;147 mAh g-1 vs115 mAh g-1 at 5 C; 93.2% vs 75.5% at 1C after 400 cycles). The oxygen release and voltage decay are also mitigated (92.4% vs 85.6% at 1C after 400 cycles). Moreover, a quantitative method to estimate U value is established for the first time. These findings provide insights into the intrinsic interaction mechanism of anions and cations redox and provide guidance for designing high-performance cathodes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Improving electrochemical properties by Na+ doping for Co-Free Li-Rich Mn-based layered oxide
    Yang, Yunqin
    Liang, Qiuming
    Lei, Tianwei
    He, Huan
    Liang, Tianquan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 968
  • [2] Li-Rich Mn-Mg Layered Oxide as a Novel Ni-/Co-Free Cathode
    Lee, Yongseok
    Park, Hyunyoung
    Cho, Min-kyung
    Ahn, Jinho
    Ko, Wonseok
    Kang, Jungmin
    Choi, Yoo Jung
    Kim, Hyungsub
    Park, Inchul
    Ryu, Won-Hee
    Hong, Jihyun
    Kim, Jongsoon
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (36)
  • [3] Advances in Li-rich Mn-based Layered Cathode Materials Enable High-performance Li-ion Batteries
    QIU Bao
    Bulletin of the Chinese Academy of Sciences, 2022, 36 (04) : 240 - 241
  • [4] AlPO4-Li3PO4 dual shell for enhancing interfacial stability of Co-free Li-rich Mn-based cathode
    Wang, Yanyan
    Yu, Wenhua
    Zhao, Liuyang
    Wu, Aimin
    Li, Aikui
    Dong, Xufeng
    Huang, Hao
    ELECTROCHIMICA ACTA, 2023, 462
  • [5] Multifunctional surface structure with enhanced electron and ion conductivities for superior electrochemical performance of Co-free Li-rich Mn-based layered oxide cathodes
    Wang, Fan
    Yan, Chenhui
    Gao, Mingxi
    Yao, Zhihao
    Gao, Mingxia
    Jing, Yixiang
    Sun, Qianwen
    Liu, Yongfeng
    Sun, Wenping
    Liang, Chu
    Zhang, Xin
    Jiang, Yinzhu
    Pan, Hongge
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [6] Stabilized Co-Free Li-Rich Oxide Cathode Particles with An Artificial Surface Prereconstruction
    Zhu, Zhi
    Gao, Rui
    Waluyo, Iradwikanari
    Dong, Yanhao
    Hunt, Adrian
    Lee, Jinhyuk
    Li, Ju
    ADVANCED ENERGY MATERIALS, 2020, 10 (35)
  • [7] Building interface bonding and shield for stable Li-rich Mn-based oxide cathode
    Chen, Jun
    Chen, Hongyi
    Mei, Yu
    Gao, Jinqiang
    Dai, Alvin
    Tian, Ye
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Banks, Craig E.
    Liu, Tongchao
    Amine, Khalil
    Ji, Xiaobo
    ENERGY STORAGE MATERIALS, 2022, 52 : 736 - 745
  • [8] In Situ Surface Reaction for the Preparation of High-Performance Li-Rich Mn-Based Cathode Materials with Integrated Surface Functionalization
    Su, Zihao
    Guo, Zhihao
    Xie, Haoyu
    Qu, Meizhen
    Peng, Gongchang
    Wang, Hao
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 39447 - 39459
  • [9] Comparative impact of surface and bulk fluoride anion doping on the electrochemical performance of co-free Li-rich Mn-based layered cathodes
    Li, Wenbo
    Dong, Jinyang
    Zhao, Yong
    Zhao, Jiayu
    Wang, Haoyu
    Li, Ning
    Lu, Yun
    Hao, Jianan
    Wu, Yujia
    Fang, Youyou
    Li, Yali
    Qi, Qiongqiong
    Su, Yuefeng
    Wu, Feng
    Chen, Lai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 675 : 251 - 262
  • [10] Interfacial Mn Vacancy for Li-Rich Mn-Based Oxide Cathodes
    Hao, Youchen
    Li, Xifei
    Liu, Wen
    Wang, Jingjing
    Shan, Hui
    Li, Wenbin
    Wang, Xianyou
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (19) : 22161 - 22169