Deep Reinforcement Learning for IRS-assisted Secure NOMA Transmissions Against Eavesdroppers

被引:0
|
作者
Zhou, Defeng [1 ,2 ]
Gong, Shimin [1 ,2 ]
Li, Lanhua [1 ,2 ]
Gu, Bo [1 ,2 ]
Guizani, Mohsen [3 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen Campus, Shenzhen, Peoples R China
[2] Guangdong Prov Key Lab Fire Sci & Intelligent Eme, Guangzhou 510006, Peoples R China
[3] Mohamed Bin Zayed Univ Artificial Intelligence MB, Machine Learning Dept, Abu Dhabi, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Secure transmission; IRS-assisted wireless network; NOMA; deep reinforcement learning; INTELLIGENT REFLECTING SURFACE; COMMUNICATION; OPTIMIZATION; ALLOCATION;
D O I
10.1109/IWCMC61514.2024.10592541
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Physical layer security issues have attracted significant attention in wireless networks to protect information leakage from illegitimate eavesdroppers. In this paper, we focus on an intelligent reflecting surface (IRS)-assisted secure non-orthogonal multiple access (NOMA) uplink system. Multiple users intend to transmit sensitive data to an access point (AP) considering the existence of a nearby eavesdropper (Eve). The IRS can be used to enhance the NOMA users' sum rates while concurrently weakening the Eve's channel condition, suppressing information leakage to the Eve without resorting to a cooperative jammer or the power injection of artificial noise in the system. The users' scheduling, the IRS's passive beamforming, and the AP's receive beamforming are jointly optimized to maximize the secure rate of the IRS-assisted NOMA system. We develop a hierarchical deep reinforcement learning (DRL) framework to iteratively search for an optimal solution considering the combinatorial nature of the NOMA users' scheduling and the high-dimensional beamforming design. Firstly, we search for the NOMA users' scheduling strategy by using the PPO-based DRL algorithm. Given the NOMA scheduling strategy, we then optimize the active and passive beamforming strategies by the alternating optimization (AO) algorithm. The inner optimization helps evaluate the quality of the scheduling strategy and thus guides the outer-PPO algorithm to update a better scheduling strategy. Simulation results demonstrate the superiority of the proposed scheme over existing benchmarks, resulting in significant gains in secure rate.
引用
收藏
页码:1236 / 1241
页数:6
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Powered IRS-Assisted Downlink NOMA
    Shehab, Muhammad
    Ciftler, Bekir S.
    Khattab, Tamer
    Abdallah, Mohamed M.
    Trinchero, Daniele
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 729 - 739
  • [2] NOMA and IRS-assisted Secure UAV Communications
    Liu, Shuzhen
    Huang, Zhiyu
    He, Guoqiang
    Nasir, Ali A.
    Yu, Hongwen
    Sheng, Zhichao
    2024 IEEE TENTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS, ICCE 2024, 2024, : 36 - 41
  • [3] Secure Transmission in IRS-Assisted MIMO Systems with Active Eavesdroppers
    Bereyhi, Ali
    Asaad, Saba
    Mueller, Ralf R.
    Schaefer, Rafael F.
    Poor, H. Vincent
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 718 - 725
  • [4] Secure Beamforming for IRS-Assisted NOMA SWIPT Networks
    Sun, Ruoming
    Wang, Wei
    Xu, Lexi
    Zhao, Nan
    Al-Dhahir, Naofal
    Wang, Xianbin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (11) : 6796 - 6809
  • [5] Deep Reinforcement Learning-Based Robust Design for an IRS-Assisted MISO-NOMA System
    Waraiet, Abdulhamed
    Cumanan, Kanapathippillai
    Ding, Zhiguo
    Dobre, Octavia A.
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 424 - 441
  • [6] Hybrid IRS-Assisted Secure Satellite Downlink Communications: A Fast Deep Reinforcement Learning Approach
    Ngo, Quynh Tu
    Phan, Khoa Tran
    Mahmood, Abdun
    Xiang, Wei
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 2858 - 2869
  • [7] RSMA-Enhanced Secure Transmission in IRS-Assisted Networks Against Internal and External Eavesdroppers
    Tang, Kun
    Wang, Zhengwu
    Zheng, Beixiong
    Feng, Wenjie
    Che, Wenquan
    Xue, Quan
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (12) : 3310 - 3314
  • [8] Deep reinforcement learning for IRS-assisted UAV covert communications
    Bi, Songjiao
    Hu, Langtao
    Liu, Quanjin
    Wu, Jianlan
    Yang, Rui
    Wu, Lei
    CHINA COMMUNICATIONS, 2023, 20 (12) : 131 - 141
  • [9] Deep Reinforcement Learning for Deception in IRS-assisted UAV Communications
    Olowononi, Felix O.
    Rawat, Danda B.
    Kamhoua, Charles A.
    Sadler, Brian M.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [10] Deep Reinforcement Learning for Deception in IRS-assisted UAV Communications
    Olowononi, Felix O.
    Rawat, Danda B.
    Kamhoua, Charles A.
    Sadler, Brian M.
    Proceedings - IEEE Military Communications Conference MILCOM, 2022, 2022-November : 763 - 768