Federated Learning for Privacy-Preserving Machine Learning in IoT Networks

被引:0
|
作者
Anitha, G. [1 ]
Jegatheesan, A. [1 ]
机构
[1] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Numerous decentralized devices; Federated learning; Internet of Things; Networking capabilities; Cryptographic techniques;
D O I
10.1109/ICOICI62503.2024.10696723
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An age of unheard of data production at the border of the network has begun for the development of Internet interconnected Things (IoT) devices. The challenge lies in using this data for artificial intelligence tasks while maintaining user privacy. One such solution is federated Learning (FL). The adoption and improvement of FL especially inside IoT settings are explored in this study, which also addresses issues with communication effectiveness, model accumulation, and compatibility between devices. The methodological basis consists of an analytical philosophy, a deductive strategy, and a design based on description. Utilizing published literature as well as technical documents, secondary data collecting is done. The study's conclusions stress the importance of communication protocols, such as Secure Socket Layer (SSL), which ensures strong encryption for safe transmission of information, and messaging queue telemetry transport (MQTT), which offers quick and easy communications. The paper also investigates how aggregation mechanisms affect model convergence. In circumstances where privacy is an issue, Federated Averaging shows effective convergence, whereas Secure Aggregation guarantees anonymity. The research also explores algorithm optimization methods that improve model efficiency on restricted resources IoT devices, such as Modelling Pruning, Quantization, as well as Lightweight Cognitive Architectures.
引用
收藏
页码:338 / 342
页数:5
相关论文
共 50 条
  • [21] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366
  • [22] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [23] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [24] Intrusion Detection Based on Privacy-Preserving Federated Learning for the Industrial IoT
    Ruzafa-Alcazar, Pedro
    Fernandez-Saura, Pablo
    Marmol-Campos, Enrique
    Gonzalez-Vidal, Aurora
    Hernandez-Ramos, Jose L.
    Bernal-Bernabe, Jorge
    Skarmeta, Antonio F.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1145 - 1154
  • [25] Efficient Privacy-Preserving Federated Learning Against Inference Attacks for IoT
    Miao, Yifeng
    Chen, Siguang
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [26] Federated Learning: The Pioneering Distributed Machine Learning and Privacy-Preserving Data Technology
    Treleaven, Philip
    Smietanka, Malgorzata
    Pithadia, Hirsh
    COMPUTER, 2022, 55 (04) : 20 - 29
  • [27] Privacy-Preserving Big Data Security for IoT With Federated Learning and Cryptography
    Awan, Kamran Ahmad
    Din, Ikram Ud
    Almogren, Ahmad
    Rodrigues, Joel J. P. C.
    IEEE ACCESS, 2023, 11 : 120918 - 120934
  • [28] Design and implementation of privacy-preserving federated learning algorithm for consumer IoT
    Zhao B.
    Ji Y.
    Shi Y.
    Jiang X.
    Alexandria Engineering Journal, 2024, 106 : 206 - 216
  • [29] Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices
    Zhao, Yang
    Zhao, Jun
    Jiang, Linshan
    Tan, Rui
    Niyato, Dusit
    Li, Zengxiang
    Lyu, Lingjuan
    Liu, Yingbo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (03) : 1817 - 1829
  • [30] Privacy-Preserving Defense: Intrusion Detection in IoT using Federated Learning
    Almeida, Leonardo
    Rodrigues, Pedro
    Teixeira, Rafael
    Antunes, Mario
    Aguiar, Rui L.
    2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024, 2024, : 908 - 913