Dynamic Q&A multi-label classification based on adaptive multi-scale feature extraction

被引:0
|
作者
Li, Ying [1 ]
Li, Ming [1 ]
Zhang, Xiaoyi [1 ]
Ding, Jin [1 ]
机构
[1] China Univ Petr, Sch Econ & Management, Beijing 102249, Peoples R China
关键词
Dynamic Q &A multi-label classification; Dynamic Q&A classification; Multi-scale feature extraction; Multi-scale feature fusion; Community question answering;
D O I
10.1016/j.asoc.2025.112740
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In community question answering (CQA), questioners use labels for question and answer (Q&A) classification when asking questions. Since the answerers do not have the same understanding and perspective of the question, the original labels cannot accurately reflect the Q&A categories with constantly given answers. Therefore, this paper proposes a dynamic Q&A multi-label classification approach based on adaptive multi-scale feature extraction. First, global and local semantic features of Q&As are extracted based on bidirectional long short-term memory network and convolutional neural network models, respectively. Second, the label features extraction and fusion method is proposed. The semantic features of the labels are extracted, the label structure graph based on horizontal and vertical dependencies is constructed, and the label structure and semantic features are fused using the graph attention network integrating multi-head self-attention mechanism. Afterward, the label-aware local features of Q&As are constructed using the attention mechanism and fused with global features of Q&A using the multi-head self-attention, thereby multi-scale fusion classification features of Q&A are established. Then, to adaptively extract the core multi-scale fusion features, a multi-objective feature selection model is established and an improved binary multi-objective Sinh Cosh optimizer algorithm is proposed to solve the model. Finally, a classification prediction layer based on a multilayer perceptron is constructed to obtain the multi-label classification results of Q&A documents. The experimental results based on real Q&A data show the superior performance of the proposed method and validate the effectiveness of the proposed four modules.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Multi-task Joint Feature Selection for Multi-label Classification
    He Zhifen
    Yang Ming
    Liu Huidong
    CHINESE JOURNAL OF ELECTRONICS, 2015, 24 (02) : 281 - 287
  • [42] Multi-Scale Feature Based Medical Image Classification
    Li, Bo
    Li, Wei
    Zhao, Dazhe
    2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 1182 - 1186
  • [43] Multi-label learning under feature extraction budgets
    Naula, Pekka
    Airola, Antti
    Salakoski, Tapio
    Pahikkala, Tapio
    PATTERN RECOGNITION LETTERS, 2014, 40 : 56 - 65
  • [44] Multi-label Emotion Classification for Microblog Based on CNN Feature Space
    Sun S.
    He Y.
    1600, Sichuan University (49): : 162 - 169
  • [45] Multi-Label Classification Based on Associations
    Alazaidah, Raed
    Samara, Ghassan
    Almatarneh, Sattam
    Hassan, Mohammad
    Aljaidi, Mohammad
    Mansur, Hasan
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [46] TOPSIS-ACO based feature selection for multi-label classification
    Verma G.
    Sahu T.P.
    International Journal of Computers and Applications, 2024, 46 (06) : 363 - 380
  • [47] Feature selection for multi-label classification based on neighborhood rough sets
    Duan, Jie
    Hu, Qinghua
    Zhang, Lingjun
    Qian, Yuhua
    Li, Deyu
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (01): : 56 - 65
  • [48] Feature selection for multi-label naive Bayes classification
    Zhang, Min-Ling
    Pena, Jose M.
    Robles, Victor
    INFORMATION SCIENCES, 2009, 179 (19) : 3218 - 3229
  • [49] Multi-label text classification with an ensemble feature space
    Tandon, Kushagri
    Chatterjee, Niladri
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (05) : 4425 - 4436
  • [50] Categorizing feature selection methods for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    ARTIFICIAL INTELLIGENCE REVIEW, 2018, 49 (01) : 57 - 78