Three-Dimensional Coherence in Arrays of Parallel One-Dimensional Wigner Crystals

被引:2
|
作者
Mendez-Camacho, Reyna [1 ]
Lopez-Lopez, Maximo [1 ]
Sanchez-Martinez, Elihu H. [2 ]
Cruz-Hernandez, Esteban [2 ]
机构
[1] Ctr Investigac & Estudios Avanzados IPN, Phys Dept, Mexico City 07360, DF, Mexico
[2] Univ Autonoma San Luis Potosi, Coordinac Innovac Aplicac Ciencia Tecnol, San Luis Potosi 78210, San Luis Potosi, Mexico
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 47期
关键词
CONDUCTANCE QUANTIZATION; QUANTUM WIRES; SPECTROSCOPY; ELECTRONS; MOLECULE; GAAS; DOTS;
D O I
10.1021/acs.jpcc.4c04422
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Studies of Wigner crystals in semiconductor nanowires reveal significant electronic characteristics, especially in configurations where electron tunneling between adjacent wires occurs. This tunneling enables long-range coherence across nanowire arrays in both ground and excited states. We employ a Yukawa-like effective potential and the Kronig-Penney model along with matrix transfer methods to analyze coherence in N x N arrays, focusing on electronic distribution, resonant energies, and coherent superposition between adjacent wires. Our results demonstrate the formation of three-dimensional, noncontinuous charge distributions coherently connected by electronic tunneling. We discuss potential applications, methods for interacting with these distributions, and their experimental feasibility. These findings enable the formation of long-range coherent charge arrays, which can be externally tuned, paving the way for large-scale, high-density integration of coherent quantum systems.
引用
收藏
页码:20244 / 20252
页数:9
相关论文
共 50 条
  • [31] Recoverable one-dimensional encoding of three-dimensional protein structures
    Kinjo, AR
    Nishikawa, K
    BIOINFORMATICS, 2005, 21 (10) : 2167 - 2170
  • [32] Reduction of three-dimensional contact problems to one-dimensional ones
    Geike, T.
    Popov, V. L.
    TRIBOLOGY INTERNATIONAL, 2007, 40 (06) : 924 - 929
  • [33] One-dimensional dense disparity estimation for three-dimensional reconstruction
    Oisel, L
    Mémin, É
    Morin, L
    Galpin, F
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (09) : 1107 - 1119
  • [34] Solitons in a one-dimensional Wigner crystal
    Pustilnik, M.
    Matveev, K. A.
    PHYSICAL REVIEW B, 2015, 91 (16)
  • [35] Equilibration of a One-Dimensional Wigner Crystal
    Matveev, K. A.
    Andreev, A. V.
    Pustilnik, M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [36] The In4Se3 crystal as a three-dimensional imitative model of phenomena in one-dimensional crystals
    Bercha, DM
    Sznajder, M
    Bercha, AI
    Kharkhalis, LY
    Rushchanskii, K
    ACTA PHYSICA POLONICA A, 1998, 94 (02) : 250 - 254
  • [38] Comparison of one-dimensional and three-dimensional models for the energy accommodation coefficient
    Özer, A
    Manson, JR
    SURFACE SCIENCE, 2002, 502 : 352 - 357
  • [39] One-Dimensional Modeling Techniques for Three-Dimensional Grade Control Structures
    Scurlock, S. Michael
    Thornton, Christopher I.
    Abt, Steven R.
    JOURNAL OF HYDRAULIC ENGINEERING, 2015, 141 (05)
  • [40] Heat conduction in a one-dimensional harmonic chain with three-dimensional vibrations
    Liu, Zonghua
    Li, Baowen
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (07)