Applying Neural Network to Health Estimation and Lifetime Prediction of Lithium-Ion Batteries

被引:2
|
作者
Li, Penghua [1 ]
Wu, Xiankui [2 ]
Grosu, Radu [3 ]
Hou, Jie [1 ]
Ilolov, Mamadsho [4 ]
Xiang, Sheng [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
[3] Vienna Univ Technol, Inst Comp Engn, A-1040 Vienna, Austria
[4] Natl Acad Sci Tajikistan, Ctr Innovat Dev Sci & New Technol, Dushanbe 734025, Tajikistan
基金
中国国家自然科学基金;
关键词
Batteries; Estimation; Aging; Reviews; Lithium-ion batteries; Electrolytes; Transportation; Artificial neural networks (ANNs); lithium-ion batteries; remaining useful life (RUL); state of health (SOH); REMAINING USEFUL LIFE; ELECTRODE-SOLUTION INTERACTIONS; RUL PREDICTION; SOH ESTIMATION; STATE; PROGNOSTICS; HYBRID; ONLINE; CHARGE; MODEL;
D O I
10.1109/TTE.2024.3457621
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, artificial neural networks (ANNs) have significantly advanced in both health estimation and lifetime prediction of lithium-ion batteries. The great success of ANNs stems primarily from their scalability in encoding large-scale data and maneuver billions of model parameters. However, there are still many challenges in balancing predictive accuracy and deployment feasibility. For instance, shallow ANNs are often more efficient but may sometimes sacrifice accuracy, whereas deep hybrid ANNs often achieve strong generalization capabilities, this comes with the trade-off of increased computational demands. To this end, this article presents a comprehensive survey of ANN-based paradigms for estimating state-of-health (SOH) and predicting the remaining useful life (RUL) of lithium-ion batteries. It covers battery aging mechanisms, available datasets, network architecture, training schemes, advanced machine learning (AML) algorithms, and performance comparison. Furthermore, challenges in battery health diagnosis are reviewed in detail, and comments on future research prospects are discussed and forwarded.
引用
收藏
页码:4224 / 4248
页数:25
相关论文
共 50 条
  • [31] State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model
    Li, Yang
    Gao, Guoqiang
    Chen, Kui
    He, Shuhang
    Liu, Kai
    Xin, Dongli
    Luo, Yang
    Long, Zhou
    Wu, Guangning
    ENERGY, 2025, 319
  • [32] State of health estimation of lithium-ion batteries based on Mixers-bidirectional temporal convolutional neural network
    Gao, Jingyi
    Yang, Dongfang
    Wang, Shi
    Li, Zhaoting
    Wang, Licheng
    Wang, Kai
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [33] A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction
    Elmahallawy, Mohamed
    Elfouly, Tarek
    Alouani, Ali
    Massoud, Ahmed M.
    IEEE Access, 2022, 10 : 119040 - 119070
  • [34] A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction
    Elmahallawy, Mohamed
    Elfouly, Tarek
    Alouani, Ali
    Massoud, Ahmed M. M.
    IEEE ACCESS, 2022, 10 : 119040 - 119070
  • [35] Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra
    Pradyumna, T. K.
    Cho, Kangcheol
    Kim, Minseong
    Choi, Woojin
    JOURNAL OF POWER ELECTRONICS, 2022, 22 (05) : 850 - 858
  • [36] Health and lifespan prediction considering degradation patterns of lithium-ion batteries based on transferable attention neural network
    Tang, Aihua
    Jiang, Yihan
    Nie, Yuwei
    Yu, Quanqing
    Shen, Weixiang
    Pecht, Michael G.
    ENERGY, 2023, 279
  • [37] State of Charge Estimation for Lithium-Ion Batteries Based on NARX Neural Network and UKF
    Qin, Xiaohan
    Gao, Mingyu
    He, Zhiwei
    Liu, Yuanyuan
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1706 - 1711
  • [38] Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra
    T. K. Pradyumna
    Kangcheol Cho
    Minseong Kim
    Woojin Choi
    Journal of Power Electronics, 2022, 22 : 850 - 858
  • [39] Capacity estimation method of lithium-ion batteries based on deep convolution neural network
    Song, Renwang
    Yang, Lei
    Chen, Linying
    Dong, Zengshou
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2022, 20 (02) : 119 - 125
  • [40] Elman neural network-based temperature prediction and optimization for lithium-ion batteries
    Li, Chaoliang
    Wang, Yuanlong
    Chen, Xiongjie
    Yu, Yi
    Zhou, Guan
    Wang, Chunyan
    Zhao, Wanzhong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024, 238 (10-11) : 3448 - 3465