Machine learning-based models for thermal cracking prediction of flexible pavements

被引:0
|
作者
Abd El-Hakim, Ragaa T. [1 ]
Kaloop, Mosbeh R. [2 ,3 ,4 ]
El-Badawy, Sherif M. [2 ]
Hu, Jong Wan [3 ,4 ]
Ali, Eman K. [2 ]
机构
[1] Tanta Univ, Publ Works Engn Dept, Tanta, Egypt
[2] Mansoura Univ, Publ Works Engn Dept, Mansoura, Egypt
[3] Incheon Natl Univ, Dept Civil & Environm Engn, Incheon, South Korea
[4] Incheon Natl Univ, Incheon Disaster Prevent Res Ctr, Incheon, South Korea
关键词
Machine learning; long-term pavement performance; transverse crack; general pavement studies; specific pavement studies; FRACTURE ENERGY;
D O I
10.1080/14680629.2024.2412101
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Prediction of transverse cracking is crucial for pavement practitioners and decision-makers to prognosticate the cracking development and allocate maintenance budgets. This research investigates thermal crack predictions, using four various machine learning techniques: the support vector regression (SVR), the regression artificial neural network (RNN), the Gaussian process regression (GPR) and the least-square boost ensemble method (LSBoost). Predictions were based on 214 pavement sections with 1262 data points from the Long-Term Pavement Performance (LTPP) database. The models are developed using 20 variables representing age, binder, mix, aggregate and climate properties. The LSBoost ML algorithm exhibited the best performance, with a coefficient of determination (R2) of 0.926 for training and 0.727 for testing. Sensitivity analysis revealed that pavement age is the predominant factor in transverse crack prediction followed by the freezing index (FI). Overall, climatic parameters played an important role in transverse crack predictions compared to the mix and binder properties.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Recent Advances in Machine Learning-Based Models for Prediction of Antiviral Peptides
    Ali, Farman
    Kumar, Harish
    Alghamdi, Wajdi
    Kateb, Faris A.
    Alarfaj, Fawaz Khaled
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (07) : 4033 - 4044
  • [22] Recursive Feature Elimination for Machine Learning-based Landslide Prediction Models
    Munasinghe, Kusala
    Karunanayake, Piyumika
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 126 - 129
  • [23] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [24] Prediction of the crack condition of highway pavements using machine learning models
    Inkoom, Sylvester
    Sobanjo, John
    Barbu, Adrian
    Niu, Xufeng
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2019, 15 (07) : 940 - 953
  • [25] Machine Learning-Based Models for Intracerebral Hemorrhage In-Hospital Mortality Prediction
    Bako, Abdulaziz T.
    Vahidy, Farhaan S.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2025, 14 (05):
  • [26] New machine learning-based prediction models for fracture energy of asphalt mixtures
    Majidifard, Hamed
    Jahangiri, Behnam
    Buttlar, William G.
    Alavi, Amir H.
    MEASUREMENT, 2019, 135 : 438 - 451
  • [27] Pre-existing and machine learning-based models for cardiovascular risk prediction
    Sang-Yeong Cho
    Sun-Hwa Kim
    Si-Hyuck Kang
    Kyong Joon Lee
    Dongjun Choi
    Seungjin Kang
    Sang Jun Park
    Tackeun Kim
    Chang-Hwan Yoon
    Tae-Jin Youn
    In-Ho Chae
    Scientific Reports, 11
  • [28] Enhancing machine learning-based survival prediction models for patients with cardiovascular diseases
    Rastogi, Tripti
    Girerd, Nicolas
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 410
  • [29] MACHINE LEARNING-BASED PREDICTION MODELS FOR C DIFFICILE INFECTION: A SYSTEMATIC REVIEW
    Tariq, Raseen
    Redij, Renisha
    Arunachalam, Shivaram Poigai
    Faubion, William
    Khanna, Sahil
    GASTROENTEROLOGY, 2023, 164 (06) : S1176 - S1176
  • [30] Machine learning-based models for prediction of innovative medicine reimbursement decisions in Scotland
    Wang, Yitong
    Tolley, Keith
    Francois, Clement
    Toumi, Mondher
    JOURNAL OF EPIDEMIOLOGY AND POPULATION HEALTH, 2025, 73 (01):