Pressure- and Temperature-Coupling-Induced Structural Transition and Thermal Properties of Al3TM (TM = Ti, Zr, Hf)

被引:0
|
作者
Ma, Li [1 ]
Huang, Jin-Li [1 ]
Xie, Qing-Lian [1 ]
Zhang, Yan-Qing [1 ]
Tang, Ping-Ying [1 ]
机构
[1] Nanning Normal Univ, Guangxi Key Lab Funct Informat Mat & Intelligent I, Nanning 530001, Peoples R China
基金
中国国家自然科学基金;
关键词
first-principles calculations; pressure and temperature coupling induced; quasi-harmonic approximations; structural transitions; thermal properties; 1ST-PRINCIPLES CALCULATIONS; THERMODYNAMIC PROPERTIES; ELECTRONIC-PROPERTIES; ELASTIC PROPERTIES; PHASE-STABILITY; AL-ZR; EXPANSION; INTERMETALLICS; CONSTANTS;
D O I
10.1002/pssb.202400324
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Pressure-temperature-coupling-induced structural transition and thermal properties of Al3TM (TM = Ti, Zr, Hf) have been studied using the first-principles calculations combined with the quasi-harmonic approximation. The enthalpy indicates that Al3TM transitions to L12 structure at a specific pressure threshold (P=30+2.6x10-4T-1.1x10-6T2$P amp;amp;amp;amp;amp;amp;amp;amp;equals; 30 amp;amp;amp;amp;amp;amp;amp;amp;plus; 2.6 \times \left(10\right)<^>{- 4} T - 1.1 \times \left(10\right)<^>{- 6} T<^>{2}$ for Al3Ti, P=29-5.5x10-4T-1.0x10-6T2$P amp;amp;amp;amp;amp;amp;amp;amp;equals; 29 - 5.5 \times \left(10\right)<^>{amp;amp;amp;amp;amp;amp;amp;amp;hyphen; 4} T - 1.0 \times \left(10\right)<^>{- 6} T<^>{2}$ for Al3Zr, and P=47-1.2x10-3T-7.5x10-7T2$P amp;amp;amp;amp;amp;amp;amp;amp;equals; 47 - 1.2 \times \left(10\right)<^>{amp;amp;amp;amp;amp;amp;amp;amp;hyphen; 3} T - 7.5 \times \left(10\right)<^>{- 7} T<^>{2}$ for Al3Hf). The fundamental thermodynamic parameters, including thermal equilibrium volume V0$V_{0}$, thermal expansion coefficient alpha, and heat capacity CP$C_{\text{P}}$, do not abruptly change due to the structural transition. Whereas many elastic properties, including elastic constants, shear modulus, and Young's modulus, exhibit abrupt variations. Such as, at P=30+2.6x10-4T-1.1x10-6T2$P amp;amp;amp;amp;amp;amp;amp;amp;equals; 30 amp;amp;amp;amp;amp;amp;amp;amp;plus; 2.6 \times \left(10\right)<^>{- 4} T - 1.1 \times \left(10\right)<^>{- 6} T<^>{2}$ structural transition critical boundaries, V0=13+1.5x10-4T+1.5x10-7T2$V_{0} amp;amp;amp;amp;amp;amp;amp;amp;equals; 13 amp;amp;amp;amp;amp;amp;amp;amp;plus; 1.5 \times \left(10\right)<^>{- 4} T amp;amp;amp;amp;amp;amp;amp;amp;plus; 1.5 \times \left(10\right)<^>{- 7} T<^>{2}$, alpha=2.2x10-5-2.5x10-5e-4.7x10-3T$\alpha amp;amp;amp;amp;amp;amp;amp;amp;equals; 2.2 \times \left(10\right)<^>{- 5} - 2.5 \times \left(10\right)<^>{- 5} e<^>{- 4.7 \times \left(10\right)<^>{- 3} T}$, and Cp=102-119e-5.4x10-3T$C_{\text{p}} amp;amp;amp;amp;amp;amp;amp;amp;equals; 102 - 119 e<^>{- 5.4 \times \left(10\right)<^>{- 3} T}$ for Al3Ti. V0$V_{0}$ shows that Al3TM is difficult to oppose hydrostatic pressure, and alpha indicates that Al3TM maintains strong stability under high pressure and its volume expansion is expected to be linear at high temperature. Furthermore, CP$C_{\text{P}}$ shows that the absorbing capacity or heat-sinking capacity of Al3TM is strong at the low pressure and high temperature. The elastic properties exhibit an increasing trend with increasing pressure, whereas they exhibit a more or less decreasing trend with increasing temperature. Both numerical indicators and 3D images of the elastic anisotropy are derived, revealing that Al3TM possesses a high degree of anisotropy.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] First-principles calculations for structural, elastic, electronic, and phonon properties of topological WC-type TMO (TM = Ti, Zr and Hf; O) family
    Ullah, Sami
    Khan, Firoz
    Hakami, Jabir
    CHINESE JOURNAL OF PHYSICS, 2023, 82 : 105 - 119
  • [32] Structural, Optoelectronic and Thermodynamical Properties of 1T Phase of Transition Metal Oxides TMO2 (TM = Zr and Hf): A first-principles Study
    Ali, Mubashar
    Bibi, Zunaira
    Younis, M. W.
    Huang, Houbing
    Raheel, Muhammad
    Afzal, Usama
    Alshgari, Razan A.
    Mohammad, Saikh
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2024,
  • [33] Pressure-induced structural phase transition and electronic properties of RESb (RE = Ho, Er and Tm) compounds: ab initio calculations
    Sahu, A. K.
    Singh, A.
    Jha, Prafulla K.
    Sanyal, Sankar P.
    PHASE TRANSITIONS, 2011, 84 (07) : 603 - 612
  • [34] Effect of pressure on structural, elastic and mechanical properties of transition metal hydrides Mg7TMH16 (TM = Sc, Ti, V, Y, Zr and Nb): First-principles investigation
    Benyelloul, Kamel
    Seddik, CLarbi
    Bouhadda, Youcef
    Bououdina, Mohamed
    Aourag, Hafid
    Khodja, Khadidja
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 111 : 229 - 237
  • [35] Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations
    Irshad, K. A.
    Anees, P.
    Sahoo, Shradhanjali
    Kumar, N. R. Sanjay
    Srihari, Velaga
    Kalavathi, S.
    Shekar, N. V. Chandra
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)
  • [36] Pressure- and temperature-induced structural changes in simulated amorphous Al2O3•2SiO2
    Van Hoang, Vo
    Linh, Nguyen Ngoc
    Hung, Nguyen Hoang
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (09): : 3074 - 3085
  • [37] Absence of a pressure-induced structural phase transition in Ti3Al up to 25 GPa
    Dubrovinskaia, NA
    Vennström, M
    Abrikosov, IA
    Ahuja, R
    Ravindran, P
    Andersson, Y
    Eriksson, O
    Dmitriev, V
    Dubrovinsky, LS
    PHYSICAL REVIEW B, 2001, 63 (02)
  • [39] Hydrostatic pressure and temperature induced phase transition and dielectric properties of La-doped Pb (Zr, Sn, Ti) O3 antiferroelectric ceramics
    Xu, Z
    Feng, YJ
    Zheng, SG
    Jin, A
    Wang, FL
    Yao, X
    ACTA PHYSICA SINICA, 2001, 50 (09) : 1787 - 1794
  • [40] Structural stability and mechanical properties of Co3 (Al, M) (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) compounds
    Jin, Min
    Miao, Naihua
    Zhao, Wenyue
    Zhou, Jian
    Du, Qiang
    Sun, Zhimei
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 148 : 27 - 37