A Comparative Analysis of Deepfake Detection Methods Using Overlapping Multiple Dynamic Images

被引:0
|
作者
Purevsuren, Enkhtaivan [1 ]
Sato, Junya [2 ]
Akashi, Takuya [3 ]
机构
[1] Iwate Univ, Grad Sch Engn, Dept Design & Media Technol, 4-3-5 Ueda, Morioka, Iwate 0208551, Japan
[2] Gifu Univ, Fac Engn, 1-1 Yanagido, Gifushi, Gifu 5011193, Japan
[3] Okayama Univ, Dept Informat Elect Mathemat Data Sci Informat, Facil Engn, 3-1-1 Tsushima Naka,Kita Ku, Okayama 7008530, Japan
关键词
fake face; deepfake; the overlapping multiple dynamic images;
D O I
10.1002/tee.24258
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deepfake technology, which uses artificial intelligence to create realistic fake images, audio, and videos, has raised significant concerns due to its potential for misuse and manipulation. The emergence of deepfake technology poses a significant threat to the integrity of digital content, necessitating robust detection mechanisms. This paper proposes a novel method for deepfake detection by combining Overlapping Multiple Dynamic Images (OMDI) and Inversed Overlapping Multiple Dynamic Images (I-OMDI). Both representations capture temporal inconsistencies and subtle visual artifacts in fake videos by effectively utilizing spatial-temporal information. Our approach employs EfficientNetB7 as the backbone for feature extraction, enabling the model to distinguish between real and fake videos with high accuracy. By combining OMDI and I-OMDI with a weighted average strategy, we amplify the strengths of each method. Specifically, we assign equal weights of 0.5 to OMDI and I-OMDI based on their individual contributions to performance metrics. This balance yields substantial performance improvements across multiple datasets. When evaluated on the Celeb-DF v2 and DFDC datasets, our proposed model achieves state-of-the-art results, with an AUC score of 0.9952 on Celeb-DF v2 and 0.9947 on DFDC. These results underscore the robustness of the combined OMDI and I-OMDI methods in identifying deepfake videos. Furthermore, our model demonstrates superior performance compared to existing methods, including those by Tran et al. and Heo et al., underscoring its effectiveness in practical deepfake detection applications. (c) 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Comparative analysis of Edge Detection techniques for SAR images
    Bachofer, Felix
    Queneherve, Geraldine
    Zwiener, Thimm
    Maerker, Michael
    Hochschild, Volker
    EUROPEAN JOURNAL OF REMOTE SENSING, 2016, 49 : 205 - 224
  • [42] Comparative Analysis of Eyes Detection on Face Thermal Images
    Hussien, M. Naeem
    Lye, Mohd-Haris
    Fauzi, Mohammad Faizal Ahmad
    Seong, Tan Ching
    Mansor, Sarina
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2017, : 385 - 389
  • [43] Comparative Analysis of Various Face Detection Methods
    Ganakwar, Deepali G.
    Kadam, Vipulsangarm K.
    2019 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2019,
  • [44] Comparative analysis of existing liquefaction detection methods
    Sun Rui
    Tang Fu-hui
    Chen Long-wei
    Yuan Xiao-ming
    ROCK AND SOIL MECHANICS, 2011, 32 : 20 - 26
  • [45] Detection methods of submerged mobile using SAR images
    Chen, YQ
    Feng, J
    Zhu, MH
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 1717 - 1720
  • [46] Detection of coastlines in SAR images using wavelet methods
    Niedermeier, A
    Romaneessen, E
    Lehner, S
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (05): : 2270 - 2281
  • [47] Multiple Nutrient Deficiency Detection in Paddy Leaf Images using Color and Pattern Analysis
    Latte, M. V.
    Shidnal, Sushila
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 1247 - 1250
  • [48] Comparative analysis of optical coherence tomography retinal images using multidimensional and cluster methods.
    Mohandass, G.
    Natarajan, Ananda R.
    Krishnan, Hari G.
    BIOMEDICAL RESEARCH-INDIA, 2015, 26 (02): : 273 - 285
  • [49] Ghosting images processing methods for dynamic aberration detection in imaging systems
    Yang, Yi
    Sun, Quan
    Zhang, Xuanzhe
    Du, Shaojun
    Yan, Baozhu
    DIGITAL OPTICAL TECHNOLOGIES 2017, 2017, 10335
  • [50] Foreground objects detection using multiple difference images
    Ha, Jong-Eun
    Lee, Wang-Heon
    OPTICAL ENGINEERING, 2010, 49 (04)