Integer points in arbitrary convex cones: the case of the PSD and SOC cones

被引:0
|
作者
De Loera, Jesus A. [1 ]
Marsters, Brittney [1 ]
Xu, Luze [1 ]
Zhang, Shixuan [2 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Texas A&M Univ, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Integer points; Convex cones; Semigroups; Hilbert bases; Conic programming; Positive semidefinite Cone; Second-order cone; TOTAL DUAL INTEGRALITY; REPRESENTATION; SEMIDEFINITE;
D O I
10.1007/s10107-024-02188-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the semigroup of integer points inside a convex cone. We extend classical results in integer linear programming to integer conic programming. We show that the semigroup associated with nonpolyhedral cones can sometimes have a notion of finite generating set with the help of a group action. We show this is true for the cone of positive semidefinite matrices (PSD) and the second-order cone (SOC). Both cones have a finite generating set of integer points, similar in spirit to Hilbert bases, under the action of a finitely generated group. We also extend notions of total dual integrality, Gomory-Chv & aacute;tal closure, and Carath & eacute;odory rank to integer points in arbitrary cones.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Spectral classification of convex cones
    Seeger, Alberto
    POSITIVITY, 2020, 24 (05) : 1241 - 1261
  • [42] Duality on locally convex cones
    Motallebi, M. R.
    Saiflu, H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) : 888 - 905
  • [43] CONVEX CONES AND FINITE OPTIMALS
    RAGHAVAN, TE
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (02): : 702 - &
  • [44] Simplicial arrangements on convex cones
    Cuntz, M.
    Muehlherr, B.
    Weigel, Ch J.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 147 - 191
  • [45] Gauge Functions for Convex Cones
    Svaiter, B. F.
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (03) : 851 - 856
  • [46] Webbed locally convex cones
    Ayaseh, Davood
    Ranjbari, Asghar
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2019, 81 (02): : 149 - 164
  • [47] ON ANGLES BETWEEN CONVEX CONES
    BAUSCHKE H.H.
    Ouyang H.
    Wang X.
    Journal of Applied and Numerical Optimization, 2022, 4 (02): : 131 - 141
  • [48] BORNOLOGICAL LOCALLY CONVEX CONES
    Ayaseh, Davood
    Ranjbari, Asghar
    MATEMATICHE, 2014, 69 (02): : 267 - 284
  • [49] A LEMMA ON OPEN CONVEX CONES
    OCHIAI, T
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1966, 12 : 231 - &
  • [50] BIASCENDING ISOMORPHISMS OF CONVEX CONES
    FAKHOURY, H
    MATHEMATISCHE ANNALEN, 1976, 224 (02) : 157 - 160