Integer points in arbitrary convex cones: the case of the PSD and SOC cones

被引:0
|
作者
De Loera, Jesus A. [1 ]
Marsters, Brittney [1 ]
Xu, Luze [1 ]
Zhang, Shixuan [2 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Texas A&M Univ, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Integer points; Convex cones; Semigroups; Hilbert bases; Conic programming; Positive semidefinite Cone; Second-order cone; TOTAL DUAL INTEGRALITY; REPRESENTATION; SEMIDEFINITE;
D O I
10.1007/s10107-024-02188-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the semigroup of integer points inside a convex cone. We extend classical results in integer linear programming to integer conic programming. We show that the semigroup associated with nonpolyhedral cones can sometimes have a notion of finite generating set with the help of a group action. We show this is true for the cone of positive semidefinite matrices (PSD) and the second-order cone (SOC). Both cones have a finite generating set of integer points, similar in spirit to Hilbert bases, under the action of a finitely generated group. We also extend notions of total dual integrality, Gomory-Chv & aacute;tal closure, and Carath & eacute;odory rank to integer points in arbitrary cones.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Integer Points in Arbitrary Convex Cones: The Case of the PSD and SOC Cones
    De Loera, Jesus A.
    Marsters, Brittney
    Xu, Luze
    Zhang, Shixuan
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2024, 2024, 14679 : 99 - 112
  • [2] Diophantine approximations and integer points of cones
    Henk, M
    Weismantel, R
    COMBINATORICA, 2002, 22 (03) : 401 - 407
  • [3] Diophantine Approximations and Integer Points of Cones
    Martin Henk
    Robert Weismantel
    Combinatorica, 2002, 22 : 401 - 408
  • [4] Rough convex cones and rough convex fuzzy cones
    Zuhua Liao
    Juan Zhou
    Soft Computing, 2012, 16 : 2083 - 2087
  • [5] Rough convex cones and rough convex fuzzy cones
    Liao, Zuhua
    Zhou, Juan
    SOFT COMPUTING, 2012, 16 (12) : 2083 - 2087
  • [6] Shapes and recession cones in mixed-integer convex representability
    Ilias Zadik
    Miles Lubin
    Juan Pablo Vielma
    Mathematical Programming, 2024, 204 : 739 - 752
  • [7] Shapes and recession cones in mixed-integer convex representability
    Zadik, Ilias
    Lubin, Miles
    Vielma, Juan Pablo
    MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 739 - 752
  • [8] Convex cones associated to generalized cones in RN
    Sanchez, Luis A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) : 2122 - 2138
  • [9] ORDINATE CONVEX CONES - H-CONES AND BIADJOINTS OF H-CONES
    BOBOC, N
    CORNEA, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (25): : 1679 - &
  • [10] Grothendieck groups, convex cones and maximal Cohen–Macaulay points
    Ryo Takahashi
    Mathematische Zeitschrift, 2021, 299 : 53 - 82