Discrete Lorentz surfaces and s-embeddings I: Isothermic surfaces

被引:0
|
作者
Affolter, Niklas christoph [1 ,2 ]
Dellinger, Felix [1 ]
Mueller, Christian [1 ]
Polly, Denis [1 ]
Smeenk, Nina [2 ]
机构
[1] TU Wien, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
[2] TU Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
奥地利科学基金会;
关键词
Circle packings; Lorentz space; Discrete differential geometry; Isothermic surfaces; Ising model; S-embeddings; CONFORMAL-INVARIANCE; ISING-MODEL; NETS; GEOMETRY; DIMERS;
D O I
10.1016/j.geomphys.2025.105482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
S-embeddings were introduced by Chelkak as a tool to study the conformal invariance of the thermodynamic limit of the Ising model. Moreover, Chelkak, Laslier and Russkikh introduced a lift of s-embeddings to Lorentz space, and showed that in the limit the lift converges to a maximal surface. They posed the question whether there are s-embeddings that lift to maximal surfaces already at the discrete level, before taking the limit. This paper is the first in a two paper series, in which we answer that question in the positive. In this paper we introduce a correspondence between s-embeddings (incircular nets) and congruences of touching Lorentz spheres. This geometric interpretation of s-embeddings enables us to apply the tools of discrete differential geometry. We identify a subclass of sembeddings - isothermic s-embeddings - that lift to (discrete) S-isothermic surfaces, which were introduced by Bobenko and Pinkall. S-isothermic surfaces are the key component that will allow us to obtain discrete maximal surfaces in the follow-up paper. Moreover, we show here that the Ising weights of an isothermic s-embedding are in a subvariety. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Isothermic surfaces as solutions of Calapso PDE
    Calapso, Maria Teresa
    Udriste, Constantin
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (01): : 20 - 26
  • [42] Formal conserved quantities for isothermic surfaces
    F. E. Burstall
    S. D. Santos
    Geometriae Dedicata, 2014, 172 : 191 - 205
  • [43] Stationary isothermic surfaces for unbounded domains
    Magnanini, Rolando
    Sakaguchi, Shigeru
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) : 2723 - 2738
  • [44] No embeddings of solenoids into surfaces
    Jiang, Boju
    Wang, Shicheng
    Zheng, Hao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (10) : 3697 - 3700
  • [45] Embeddings of curves and surfaces
    Catanse, F
    Franciosi, M
    Hulek, K
    Reid, M
    NAGOYA MATHEMATICAL JOURNAL, 1999, 154 : 185 - 220
  • [46] Embeddings of Danielewski surfaces
    Gene Freudenburg
    Lucy Moser-Jauslin
    Mathematische Zeitschrift, 2003, 245 : 823 - 834
  • [47] Embeddings of Danielewski surfaces
    Freudenburg, G
    Moser-Jauslin, L
    MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (04) : 823 - 834
  • [48] ISOTHERMIC SURFACES OBTAINED FROM HARMONIC MAPS IN S-6
    Pacheco, Rui
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2018, 103 (117): : 175 - 180
  • [49] Generalized polar transforms of spacelike isothermic surfaces
    Wang, Peng
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) : 403 - 411
  • [50] Regarding two relative problems on isothermic surfaces
    Raffy, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1904, 139 : 119 - 121