Discrete Lorentz surfaces and s-embeddings I: Isothermic surfaces

被引:0
|
作者
Affolter, Niklas christoph [1 ,2 ]
Dellinger, Felix [1 ]
Mueller, Christian [1 ]
Polly, Denis [1 ]
Smeenk, Nina [2 ]
机构
[1] TU Wien, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
[2] TU Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
奥地利科学基金会;
关键词
Circle packings; Lorentz space; Discrete differential geometry; Isothermic surfaces; Ising model; S-embeddings; CONFORMAL-INVARIANCE; ISING-MODEL; NETS; GEOMETRY; DIMERS;
D O I
10.1016/j.geomphys.2025.105482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
S-embeddings were introduced by Chelkak as a tool to study the conformal invariance of the thermodynamic limit of the Ising model. Moreover, Chelkak, Laslier and Russkikh introduced a lift of s-embeddings to Lorentz space, and showed that in the limit the lift converges to a maximal surface. They posed the question whether there are s-embeddings that lift to maximal surfaces already at the discrete level, before taking the limit. This paper is the first in a two paper series, in which we answer that question in the positive. In this paper we introduce a correspondence between s-embeddings (incircular nets) and congruences of touching Lorentz spheres. This geometric interpretation of s-embeddings enables us to apply the tools of discrete differential geometry. We identify a subclass of sembeddings - isothermic s-embeddings - that lift to (discrete) S-isothermic surfaces, which were introduced by Bobenko and Pinkall. S-isothermic surfaces are the key component that will allow us to obtain discrete maximal surfaces in the follow-up paper. Moreover, we show here that the Ising weights of an isothermic s-embedding are in a subvariety. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Discrete isothermic surfaces
    Bobenko, A
    Pinkall, U
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 475 : 187 - 208
  • [2] Discrete special isothermic surfaces
    Burstall, F.
    Hertrich-Jeromin, U.
    Rossman, W.
    Santos, S.
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 1 - 11
  • [3] Discrete special isothermic surfaces
    F. Burstall
    U. Hertrich-Jeromin
    W. Rossman
    S. Santos
    Geometriae Dedicata, 2015, 174 : 1 - 11
  • [4] Discrete Koenigs Nets and Discrete Isothermic Surfaces
    Bobenko, Alexander I.
    Suris, Yuri B.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (11) : 1976 - 2012
  • [5] Semi-Discrete Isothermic Surfaces
    Christian Müller
    Johannes Wallner
    Results in Mathematics, 2013, 63 : 1395 - 1407
  • [6] Semi-Discrete Isothermic Surfaces
    Mueller, Christian
    Wallner, Johannes
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 1395 - 1407
  • [7] Semi-discrete isothermic surfaces
    F. Burstall
    U. Hertrich-Jeromin
    C. Müller
    W. Rossman
    Geometriae Dedicata, 2016, 183 : 43 - 58
  • [8] Semi-discrete isothermic surfaces
    Burstall, F.
    Hertrich-Jeromin, U.
    Mueller, C.
    Rossman, W.
    GEOMETRIAE DEDICATA, 2016, 183 (01) : 43 - 58
  • [9] Bonnet Surfaces and Isothermic Surfaces
    Chen W.
    Li H.
    Results in Mathematics, 1997, 31 (1-2) : 40 - 52
  • [10] Isothermic surfaces
    Thybaut, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1900, 131 : 932 - 935