COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2

被引:1
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Nalliah, M. [3 ]
Zhang, Ruixue [4 ]
Premalatha, K. [5 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Math, Segamat Campus, Segamat 85000, Johor, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
[5] Sri Shakthi Inst Engn & Technol, Dept Math, Coimbatore 641062, India
来源
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI | 2024年 / 34卷 / 03期
关键词
local antimagic labeling; local antimagic chromatic number; s-bridge graphs;
D O I
10.35634/vm240305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f : E -> {1,. .. ,|E| } such that for any pair of adjacent vertices x and y, f(+)(x) not equal f(+)(y), where the induced vertex label f( +)(x) = Sigma f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2.
引用
收藏
页码:375 / 396
页数:22
相关论文
共 50 条
  • [1] On Bridge Graphs with Local Antimagic Chromatic Number 3
    Shiu, Wai-Chee
    Lau, Gee-Choon
    Zhang, Ruixue
    MATHEMATICS, 2025, 13 (01)
  • [2] Local distance antimagic chromatic number for the union of complete bipartite graphs
    Priyadharshini, V.
    Nalliah, M.
    TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (04): : 281 - 291
  • [3] On modulo local antimagic chromatic number of graphs
    Li, Jianxi
    Lau, Gee-Choon
    Shiu, Wai-Chee
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2519 - 2533
  • [4] Local Antimagic Chromatic Number for Copies of Graphs
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    Wang, Tao-Ming
    MATHEMATICS, 2021, 9 (11)
  • [5] On local antimagic chromatic number of spider graphs
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Soo, Chee-Xian
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 303 - 339
  • [6] Complete solutions on local antimagic chromatic number of three families of disconnected graphs
    Chan, Tsz Lung
    Lau, Gee-Choon
    Shiu, Wai Chee
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [7] On the local antimagic chromatic number of the lexicographic product of graphs
    Lau, Gee-Choon
    Shiu, Wai Chee
    Kanthavadivel, Premalatha
    Zhang, Ruixue
    Movirichettiar, Nalliah
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 76 - 83
  • [8] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT GRAPHS
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (1) : 158 - 170
  • [9] On local antimagic chromatic number of lexicographic product graphs
    Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Johor Branch, Segamat Campus, 85000, Malaysia
    不详
    arXiv,
  • [10] On local antimagic chromatic number of various join graphs
    Premalatha, K.
    Lau, G. C.
    Arumugam, S.
    Shiu, W. C.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (04) : 693 - 714