On local antimagic chromatic number of various join graphs

被引:4
|
作者
Premalatha, K. [1 ]
Lau, G. C. [2 ]
Arumugam, S. [1 ]
Shiu, W. C. [3 ]
机构
[1] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Anand Nagar, Krishnankoil 626126, Tamil Nadu, India
[2] Univ Teknol MARA, Fac Comp & Math Sci, Johor Branch, Segamat Campus, Shah Alam 85000, Malaysia
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
graphs Local antimagic chromatic number; join product; wheels; fans;
D O I
10.22049/CCO.2022.27937.1399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A local antimagic edge labeling of a graph G = (V, E) is a bijection f : E -> {1, 2, ... , |E|} such that the induced vertex labeling f+ : V-+ Z given by f+(u) = E f(e), where the summation runs over all edges e incident to u, has the property that any two adjacent vertices have distinct labels. A graph G is said to be locally antimagic if it admits a local antimagic edge labeling. The local antimagic chromatic number chi(la)(G) is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper we obtain sufficient conditions under which chi(la)(G V H), where H is either a cycle or the empty graph On = K(over bar)(n), satisfies a sharp upper bound. Using this we determine the value of chi(la)(G V H) for many wheel related graphs G.
引用
收藏
页码:693 / 714
页数:22
相关论文
共 50 条
  • [1] On join product and local antimagic chromatic number of regular graphs
    G. -C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 108 - 133
  • [2] On join product and local antimagic chromatic number of regular graphs
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (01) : 108 - 133
  • [3] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF CYCLE-RELATED JOIN GRAPHS
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 133 - 152
  • [4] On local antimagic chromatic number of cycle-related join graphs II
    Lau, Gee-Choon
    Premalatha, K.
    Arumugam, S.
    Shiu, Wai Chee
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)
  • [5] The Local Antimagic Chromatic Numbers of Some Join Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [6] On modulo local antimagic chromatic number of graphs
    Li, Jianxi
    Lau, Gee-Choon
    Shiu, Wai-Chee
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2519 - 2533
  • [7] Local Antimagic Chromatic Number for Copies of Graphs
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    Wang, Tao-Ming
    MATHEMATICS, 2021, 9 (11)
  • [8] On local antimagic chromatic number of spider graphs
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Soo, Chee-Xian
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 303 - 339
  • [9] On the local antimagic chromatic number of the lexicographic product of graphs
    Lau, Gee-Choon
    Shiu, Wai Chee
    Kanthavadivel, Premalatha
    Zhang, Ruixue
    Movirichettiar, Nalliah
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 76 - 83
  • [10] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT GRAPHS
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (1) : 158 - 170