Predicting Employee Turnover Using Machine Learning Techniques

被引:0
|
作者
Benabou, Adil [1 ]
Touhami, Fatima [1 ]
Sabri, My Abdelouahed [2 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Econ & Management, Multidisciplinary Res Lab Econ & Management, Beni Mellal, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Sci & Technol, Dept Comp Sci, Fes, Morocco
关键词
Human resource management; HRM; Machine learning; Employee attrition; Prediction; TREES;
D O I
10.18267/j.aip.255
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: Employee turnover is a persistent issue in human resource management, leading to significant costs for organizations. This study aims to identifythe most effective machine learning model for predicting employee attrition, thereby providing organizations with a reliable tool to anticipate turnover and implement proactive retention strategies. Objective: This study aims to address the challenge of employee attrition by applying machine learning techniques to provide predictive insights that can improve retention strategies. Methods: Nine machine learning algorithms are applied to a dataset of 1,470 employee records. After data preprocessing and splitting into training and test sets, the models are evaluated on metrics including accuracy, precision, recall, F1 score and AUC. Model performance is optimized through hyperparameter tuning, using grid search with cross-validation. Results: Logistic regression achieves the highest accuracy and precision, making it the top-performing model overall. Random forest provides a balanced performance with strong AUC, offering a robust alternative. Conclusion: Human resources managers and directors should consider using logistic regression or random forest for predictive modelling of employee turnover, as these models have shown strong performance. Future research should employ causal analysis for deeper insights. Real-time monitoring and adaptive prediction could also enhance models, offering a dynamic approach to attrition management.
引用
收藏
页码:112 / 127
页数:16
相关论文
共 50 条
  • [41] Predicting Market Performance Using Machine and Deep Learning Techniques
    El Mahjouby, Mohamed
    Bennani, Mohamed Taj
    Lamrini, Mohamed
    Bossoufi, Badre
    Alghamdi, Thamer A. H.
    El Far, Mohamed
    IEEE ACCESS, 2024, 12 : 82033 - 82040
  • [42] Predicting Success of Bollywood Movies Using Machine Learning Techniques
    Jaiswal, Sameer Ranjan
    Sharma, Divyansh
    COMPUTE'17: PROCEEDINGS OF THE 10TH ANNUAL ACM INDIA COMPUTE CONFERENCE, 2017, : 121 - 124
  • [43] Predicting Postgraduate Students' Performance Using Machine Learning Techniques
    Koutina, Maria
    Kermanidis, Katia Lida
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT II, 2011, 364 : 159 - 168
  • [44] Predicting malaria outbreak in The Gambia using machine learning techniques
    Khan, Ousman
    Ajadi, Jimoh Olawale
    Hossain, M. Pear
    PLOS ONE, 2024, 19 (05):
  • [45] Predicting Software Effort Estimation Using Machine Learning Techniques
    BaniMustafa, Ahmed
    2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (CSIT), 2018, : 249 - 256
  • [46] PREDICTING NASH PATIENTS USING INNOVATIVE MACHINE LEARNING TECHNIQUES
    Docherty, M.
    Huang, J.
    Regnier, S. A.
    Capkun, G.
    Balp, M. M.
    Ye, Q.
    Janssens, N.
    Lopez, P.
    Pedrosa, M.
    Schattenberg, J. M.
    VALUE IN HEALTH, 2019, 22 : S595 - S595
  • [47] Predicting Breast Screening Attendance Using Machine Learning Techniques
    Baskaran, Vikraman
    Guergachi, Aziz
    Bali, Rajeev K.
    Naguib, Raouf N. G.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (02): : 251 - 259
  • [48] Predicting sustainable arsenic mitigation using machine learning techniques
    Singh, Sushant K.
    Taylor, Robert W.
    Pradhan, Biswajeet
    Shirzadi, Ataollah
    Binh Thai Pham
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 232
  • [49] Predicting nuclear fuel parameters by using machine learning techniques
    Cabezas Contardo, Juan M.
    Lopez-Cortes, Xaviera A.
    Merino, Ivan
    2021 40TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2021,
  • [50] Predicting the quality of air using supervised techniques of machine learning
    Sai Kumar, G.
    Mahalakshmi, D.
    Test Engineering and Management, 2019, 81 (11-12): : 5393 - 5398