Phase change materials integrated into building envelopes for thermal management: A review

被引:0
|
作者
Han, Miao [1 ]
Lu, Lin [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg Environm & Energy Engn, Hong Kong, Peoples R China
来源
关键词
Phase change materials; Building envelopes; Indoor thermal environment; Energy; Building thermal management; CHANGE MATERIALS PCM; RADIANT FLOOR; STORAGE; PERFORMANCE; MICROENCAPSULATION; ENHANCEMENT; SUMMER;
D O I
10.1016/j.jobe.2025.112063
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The building indoor environment undergoes heat exchange with external environment through building envelopes (BEs), causing indoor environment to fluctuate along with external variations, which will consume a significant amount of energy for regulating the building's thermal comfort. Incorporating phase change materials (PCMs) into BEs presents a promising solution to reduce energy consumption (EC) for heating and cooling in buildings. PCMs possess the ability to store and release a large amount of latent heat while maintaining a constant temperature during phase transitions. This property provides PCMs with the capacity for passive thermal management in buildings. However, solid-liquid PCMs (SLPCMs) have an inherent drawback: liquid leakage. Encapsulating SLPCMs is an indispensable step for their practical applications. This paper reviews the encapsulation methods of SLPCMs. Additionally, solid-solid PCMs (SSPCMs) are an excellent alternative to SLPCMs due to no liquid leakage. On the other hand, the low thermal conductivity of commonly used organic PCMs is a recognized problem, and this paper reviews methods to improve their thermal conductivity. Furthermore, this paper reviews the integration methods of PCMs into BEs, such as walls, roofs, windows, and floors, along with the energy benefits they achieve. From addressing the drawbacks of PCMs (liquid leakage and low thermal conductivity) to exploring integration methods of PCMs into BEs, this review comprehensively examines solutions to the main challenges faced in the integration of PCMs into BEs, providing a broad perspective and extensive reference for future research.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Phase change materials integrated into building walls: An updated review
    Lamrani, B.
    Johannes, K.
    Kuznik, F.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 140
  • [12] A Review on Numerical Modeling of the Hygrothermal Behavior of Building Envelopes Incorporating Phase Change Materials
    Sawadogo, Mohamed
    Godin, Alexandre
    Duquesne, Marie
    Hamami, Ameur El Amine
    Belarbi, Rafik
    BUILDINGS, 2023, 13 (12)
  • [13] Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage
    Sawadogo, Mohamed
    Duquesne, Marie
    Belarbi, Rafik
    Hamami, Ameur El Amine
    Godin, Alexandre
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [14] Thermal storage/management system with phase change materials for building
    Yuan, Yanping
    Liu, Shuli
    Du, Yanxia
    Wu, Hongwei
    Zhao, Xudong
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (01):
  • [15] Phase change material incorporation techniques in building envelopes for enhancing the building thermal Comfort-A review
    Suresh, C.
    Hotta, Tapano Kumar
    Saha, Sandip K.
    ENERGY AND BUILDINGS, 2022, 268
  • [16] An Enhanced Simulation Model for Building Envelopes with Phase Change Materials
    Chandrasekharan, Ramprasad
    Lee, Edwin S.
    Fisher, Daniel E.
    Deokar, Pratik S.
    2013 ASHRAE ANNUAL CONFERENCE, 2013,
  • [17] Review on optimization of phase change parameters in phase change material building envelopes
    Cai, Ruonan
    Sun, Zhigao
    Yu, Hang
    Meng, Erlin
    Wang, Junqi
    Dai, Mengling
    JOURNAL OF BUILDING ENGINEERING, 2021, 35
  • [18] Phase Change Materials for building envelopes in Reunion Island, France
    Trovalet, L.
    Liu, L.
    Bigot, D.
    Malet-Damour, B.
    CARBON-NEUTRAL CITIES - ENERGY EFFICIENCY AND RENEWABLES IN THE DIGITAL ERA (CISBAT 2021), 2021, 2042
  • [19] Review of thermal management of electronics and phase change materials
    Ghadim, H. Benisi
    Godin, A.
    Veillere, A.
    Duquesne, M.
    Haillot, D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 208
  • [20] Performance Assessment of Two Different Phase Change Materials for Thermal Energy Storage in Building Envelopes
    Vanaga, Ruta
    Narbuts, Janis
    Freimanis, Ritvars
    Zundans, Zigmars
    Blumberga, Andra
    ENERGIES, 2023, 16 (13)