A Thin-Film Heat Flux Sensor With an Insulation Layer Using Chemical Vapor Deposition for High-Temperature Bearings

被引:0
|
作者
Li, Xin [1 ]
Huang, Zixin [2 ]
Huang, Yunwei [2 ]
机构
[1] Lingnan Normal Univ, Sch Mech & Elect Engn, Zhanjiang 524000, Peoples R China
[2] Dongguan Univ Technol, Sch Mech Engn, Dongguan 523808, Peoples R China
关键词
Insulation; Thermal stability; Temperature sensors; Metals; Thermal resistance; Temperature measurement; Substrates; Resistance heating; Thermal expansion; Temperature; Chemical vapor deposition (CVD); high-temperature bearing; insulation layer; thermal barrier coating; thin-film heat flux sensor; TRANSISTOR;
D O I
10.1109/TIM.2025.3527519
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thermal barrier coatings offer extended and stable services for high-temperature bearings where heat flux density is a vital parameter for coating monitoring. As the electrical insulation between the sensing element and the alloy substrate of the bearing is a prerequisite for a thin-film sensor, a high-temperature chemical vapor deposition (CVD) was developed to deposit alpha -Al2O3 in situ on the surface of GH3536 alloy in this work. An ITO/In2O3 thermopile was then prepared on the CVD-Al2O3 insulation layer to develop a thin-film heat flux sensor. Compared to traditional physical vapor deposition (PVD), CVD reduces the insulation loss of the insulation film caused by the annealing process. During the electrical insulation test at 1000 (degrees) C, the film resistance reached 1.5 M Omega . Experimental results show that the heat flux density of 300 kW/m(2) can be measured at 1040 (degrees) C for the developed sensor, with a sensitivity of 22.59 mu V/(kW/m(2)) and a response frequency of 6.83 kHz. It provides a reliable method for measuring heat flux density on the thermal barrier coating of the high-temperature bearing.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] High-throughput chemical vapor deposition system and thin-film silicon library
    Wang, Q
    Liu, FZ
    Han, DX
    MACROMOLECULAR RAPID COMMUNICATIONS, 2004, 25 (01) : 326 - 329
  • [22] Fabrication of High-Temperature Polymer- Derived Ceramic Thin-Film Heat Flux Sensor by 3-D Printing and Laser Pyrolysis
    Li, Lanlan
    Xu, Lida
    He, Yingping
    Chen, Guochun
    Zeng, Yingjun
    Shao, Chenhe
    Tang, Lantian
    He, Gonghan
    Zhao, Yang
    Sun, Daoheng
    Hai, Zhenyin
    IEEE SENSORS JOURNAL, 2023, 23 (14) : 15391 - 15399
  • [23] COMBUSTION CHEMICAL-VAPOR-DEPOSITION - A NOVEL THIN-FILM DEPOSITION TECHNIQUE
    HUNT, AT
    CARTER, WB
    COCHRAN, JK
    APPLIED PHYSICS LETTERS, 1993, 63 (02) : 266 - 268
  • [24] The reason why thin-film silicon grows layer by layer in plasma-enhanced chemical vapor deposition
    Kuwahara, Takuya
    Ito, Hiroshi
    Kawaguchi, Kentaro
    Higuchi, Yuji
    Ozawa, Nobuki
    Kubo, Momoji
    SCIENTIFIC REPORTS, 2015, 5
  • [25] The reason why thin-film silicon grows layer by layer in plasma-enhanced chemical vapor deposition
    Takuya Kuwahara
    Hiroshi Ito
    Kentaro Kawaguchi
    Yuji Higuchi
    Nobuki Ozawa
    Momoji Kubo
    Scientific Reports, 5
  • [26] Thin-Film Characterization for High-Temperature Applications
    M. J. Lourenço
    J. M. Serra
    M. R. Nunes
    A. M. Vallêra
    C. A. Nieto de Castro
    International Journal of Thermophysics, 1998, 19 : 1253 - 1265
  • [27] High-temperature thin-film strain gauges
    Kayser, P.
    Godefroy, J.C.
    Leca, L.
    Sensors and Actuators, A: Physical, 1993, 37-38 (02) : 328 - 332
  • [28] Thin-film characterization for high-temperature applications
    Lourenco, MJ
    Serra, JM
    Nunes, MR
    Vallera, AM
    de Castro, CAN
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1998, 19 (04) : 1253 - 1265
  • [29] HIGH-TEMPERATURE STABLE THIN-FILM THERMOCOUPLES
    PALATNIK, LS
    BOGDANOVA, AF
    SIMBIRSKII, DF
    KAGAN, YI
    KOLESNIK, BI
    GRIGOREV, LS
    MEASUREMENT TECHNIQUES-USSR, 1971, 14 (07): : 1025 - +
  • [30] SPUTTERED HIGH-TEMPERATURE THIN-FILM THERMOCOUPLES
    KREIDER, KG
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1993, 11 (04): : 1401 - 1405