Auto-generating of 2D tessellated crease patterns of 3D biomimetic spring origami structure

被引:2
|
作者
Teo, Yu Xing [1 ]
Cai, Catherine Jiayi [1 ]
Yeow, Bok Seng [1 ]
Tse, Zion Tsz Ho [2 ]
Ren, Hongliang [1 ,3 ]
机构
[1] Natl Univ Singapore, Biomed Engn Dept, Singapore 117575, Singapore
[2] Univ York, Dept Elect Engn, York YO10 5DD, England
[3] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
来源
关键词
Biomimetic soft robotics; 3D origami design; Design automation; Computer-aided design; Structural optimization; Parametric design; DESIGN;
D O I
10.1016/j.birob.2022.100036
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Computational simulations can accelerate the design and modelling of origami robots and mechanisms. This paper presents a computational method using algorithms developed in Python to generate different tessellated origami crease patterns simultaneously. This paper aims to automate this process by introducing a system that automatically generates origami crease patterns in Scalable Vector Graphics format. By introducing different parameters, variations of the same underlying tessellated crease pattern can be obtained. The user interface consists of an input file where the user can input the desired parameters, which are then processed by an algorithm written in Python to generate the respective origami 2D crease patterns. These origami crease patterns can serve as inputs to current origami design software and algorithms to generate origami design models for faster and easier visual comparison. This paper utilizes a basic biomimetic inspiration origami pattern to demonstrate the functionality by varying underlying crease pattern parameters that give rise to symmetric and asymmetric spring origami 3D structures. Furthermore, this paper conducts a qualitative analysis of the origami design outputs of an origami simulator from the input crease patterns and the respective manual folding of the origami structure.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Approximating complex 3D curves using origami spring structures
    Zuolin Liu
    Zian Zhang
    Hongbin Fang
    Communications Engineering, 2 (1):
  • [42] 21/2D or 3D?
    Roth, S
    Küster, B
    Sura, H
    KUNSTSTOFFE-PLAST EUROPE, 2004, 94 (07): : 65 - 67
  • [43] 2D and 3D on demand
    Philippi, Anne
    F & M; Feinwerktechnik, Mikrotechnik, Messtechnik, 1998, 106 (06): : 412 - 414
  • [44] From 2D to 3D
    Steven De Feyter
    Nature Chemistry, 2011, 3 (1) : 14 - 15
  • [45] 3D DNA Origami Map Structure Simulation
    Itcus, Corina
    Amarioarei, Alexandru
    Czeizler, Eugen
    Dobre, Ana-Maria
    Mitrana, Victor
    Negre, Florentina
    Paun, Andrei
    Paun, Mihaela
    Sidoroff, Manuela Elisabeta
    Trandafir, Romica
    Tusa, Iris
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2018, 21 (03): : 249 - 255
  • [46] Design and motion analysis of axisymmetric 3D origami with generic six-crease bases
    Zhao, Yan
    Kanamori, Yoshihiro
    Mitani, Jun
    COMPUTER AIDED GEOMETRIC DESIGN, 2018, 59 : 86 - 97
  • [47] Self-Organogenesis from 2D Micropatterns to 3D Biomimetic Biliary Trees
    Gontran, Emilie
    Loarca, Lorena
    El Kassis, Cyrille
    Bouzhir, Latifa
    Ayollo, Dmitry
    Mazari-Arrighi, Elsa
    Fuchs, Alexandra
    Dupuis-Williams, Pascale
    BIOENGINEERING-BASEL, 2021, 8 (08):
  • [48] A quantitative model for the transcription of 2D patterns into functional 3D architectures
    Orentas E.
    Lista M.
    Lin N.-T.
    Sakai N.
    Matile S.
    Nature Chemistry, 2012, 4 (9) : 746 - 750
  • [49] 3D shape measurement with 2D area modulated binary patterns
    Lohry, William
    Zhang, Song
    OPTICS AND LASERS IN ENGINEERING, 2012, 50 (07) : 917 - 921
  • [50] Transition of Defect Patterns from 2D to 3D in Liquid Crystals
    Qu, Yang
    Wei, Ying
    Zhang, Pingwen
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (03) : 890 - 904