Molecular engineering of pore structure/interfacial functional groups toward hard carbon anode in sodium-ion batteries

被引:1
|
作者
Liu, Yu [1 ,2 ]
Yin, Jian [1 ,2 ]
Wu, Ruiyao [1 ]
Zhang, Hu [1 ]
Zhang, Rui [1 ]
Huo, Ruiqiang [1 ,2 ]
Zhao, Jingxin [3 ,4 ]
Zhang, Kai-Yang [5 ]
Yin, Jiao [1 ,2 ]
Wu, Xing-Long [5 ]
Zhu, Hui [1 ,2 ]
机构
[1] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Xinjiang Key Lab Separat Mat & Technol, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Intelligent Wearable Syst, Nanotechnol Ctr, Hung Hom,Kowloon, Hong Kong 999077, Peoples R China
[4] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Peoples R China
[5] Northeast Normal Univ, MOE Key Lab UV Light Emitting Mat & Technol, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Hard carbon; Interface regulation; Pore structure; SEI;
D O I
10.1016/j.ensm.2025.104008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon with abundant pore structure and suitable interface has become a promising anode for sodium-ion batteries. However, it is still a challenge to accurately regulate the hard carbon micropore structure and customize the appropriate interface. Herein, different heteroatoms are introduced into the precursor to regulate the pore structure of hard carbon through its pyrolytic components, and in-situ doping is also used to optimize the interface. The results show that the hard carbon cross-linked with oxy-hybrid (HC-O) possesses affluent micropores (0.5 similar to 0.9 nm) and groups of carbonyls (C = O). The micropores can accelerate the plateau capacity, while the C = O can induce the formation of inorganic rich solid electrolyte interface (SEI) to promote initial coulombic efficiency (ICE). Benefiting from the unique structure of HC-O, the Na//HC-O half-cell exhibits high reversible capacity of 352.9 mAh g(-1) and ICE of 88.0 %. In addition, the assembled HC-O//Na3V2(PO4)(2)F-3@C full-cell reveals splendid rate performance and excellent cycling stability with capacity retention rate of 86.1 % after 300 cycles. The significance of different heteroatom cross-linked precursors on hard carbon modification is studied systematically, which provides new ideas and insights for designing hard carbon anodes of high-performance sodium-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Toward high-performance hard carbon as an anode for sodium-ion batteries: Demineralization of biomass as a critical step
    Susanti, Ratna Frida
    Alvin, Stevanus
    Kim, Jaehoon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 91 (91) : 317 - 329
  • [22] Flexible Precursor Modulation toward Selective Heteroatom Doping in a Hard-Carbon Anode for Sodium-Ion Batteries
    Zhang, Haihan
    Yang, Mingyu
    Xiao, Zichun
    Xie, Keyu
    Shao, Le
    Huang, Cheng
    Shu, Chengyong
    Peng, Chengxin
    Wu, Yuping
    Tang, Wei
    ENERGY & FUELS, 2023, 37 (19) : 15127 - 15137
  • [23] Hard carbon anode from sodium lignosulfonate-formaldehyde resin for sodium-ion batteries
    EL Moctar, Ismaila
    Diawara, Moussa
    Seydou, Mahamadou
    Yu, Jianyuan
    Ma, Yanli
    Huang, Haibo
    Li, Shujun
    CARBON LETTERS, 2025,
  • [24] Structure and function of hard carbon negative electrodes for sodium-ion batteries
    Mittal, Uttam
    Djuandhi, Lisa
    Sharma, Neeraj
    Andersen, Henrik L.
    JOURNAL OF PHYSICS-ENERGY, 2022, 4 (04):
  • [25] Influence of Hard Carbon Materials Structure on the Performance of Sodium-Ion Batteries
    Ren, Yifei
    Wang, Zhixing
    Wang, Jiexi
    Yan, Guochun
    Li, Xinhai
    Peng, Wenjie
    Guo, Huajun
    ENERGY & FUELS, 2023, 37 (18) : 14365 - 14374
  • [26] Functional Design of Hard Carbon and Its Application in Sodium-Ion Battery Anode
    Feng, Xin
    Li, Ying
    Liu, Mingquan
    Li, Qiaojun
    Zhao, Yang
    Bai, Ying
    Wu, Chuan
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (07): : 1838 - 1851
  • [27] Hard carbon anodes for sodium-ion batteries: Dependence of the microstructure and performance on the molecular structure of lignin
    Meng, Qingwei
    Chen, Binyi
    Jian, Wenbin
    Zhang, Xiaoshan
    Sun, Shirong
    Wang, Tiejun
    Zhang, Wenli
    JOURNAL OF POWER SOURCES, 2023, 581
  • [28] Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries
    Li, Yilin
    Xia, Dawei
    Tao, Lei
    Xu, Zhiyuan
    Yu, Dajun
    Jin, Qing
    Lin, Feng
    Huang, Haibo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28461 - 28472
  • [29] Hard carbon derived from pomegranate peels as anode material for sodium-ion batteries
    Babu, M. G. Karthick
    Sampath, Ramakumar
    Kumar, Deepak
    Ramesha, K.
    IONICS, 2025,
  • [30] Advances in the structural engineering and commercialization processes of hard carbon for sodium-ion batteries
    Yang, Cheng
    Zhao, Jiahua
    Dong, Bo
    Lei, Ming
    Zhang, Xiwen
    Xie, Weibin
    Chen, Mingzhe
    Zhang, Kai
    Zhou, Limin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (03) : 1340 - 1358