Biomedical electronics have garnered significant interest due to the rising demand for advanced healthcare devices for diagnosis, monitoring, and treatment. Threedimensional (3D) printing, or additive manufacturing, has emerged as an attractive fabrication method for developing these advanced biomedical devices. Its unique features, such as versatility, cost-effectiveness, and rapid prototyping capabilities, when combined with medical imaging technologies enable the creation of highly precise and customized patient-specific structures. Extensive research in the field of 3D printing has focused on developing biomedical devices, including wearable and implantable devices, as well as scaffolds or platforms. Recently, the integration of 3D printing with state-of-the-art electronic materials, known for their high flexibility, conductivity, stretchability, stability, and biocompatibility, has led to the development of innovative biomedical electronics. In this review, we outline the recent advancements in 3D printing technologies and their applications in bioelectronic devices. Firstly, we describe various 3D printing methods and printable electronic materials, highlighting their advantages and limitations. Subsequently, we explore the applications of these technologies in biomedical research, spanning from surgical guidance and prosthetics to health monitoring devices and tissueengineered scaffolds. Finally, this review discusses the current challenges and future directions to fully exploit the potential of 3D-printed bioelectronic devices, aimed at transforming personalized healthcare.