Numerical modelling of thermoacoustic Stirling engines & refrigerators

被引:0
|
作者
Butson, H. [1 ]
Gschwendtner, M. [1 ]
Caughley, A. [2 ]
Badcock, R. [3 ]
Weijers, H. [3 ]
Lumsden, G. [3 ]
机构
[1] Auckland Univ Technol, 55 Wellesley St E, Auckland 1010, New Zealand
[2] Callaghan Innovat, 5 Sheffield Crescent, Christchurch 8053, New Zealand
[3] Paihau Robinson Res Inst, POB 33436, Lower Hutt 5046, New Zealand
关键词
D O I
10.1088/1757-899X/1301/1/012148
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper investigates how numerical modelling can be used to explore thermoacoustic machines and compares the accuracy of the performance predictions for different simulation software. The software used includes one designed for modelling Stirling machines called 'Sage' and for modelling thermoacoustic machines called 'DeltaEC.' To compare their results, a model of both a thermoacoustic Stirling engine and refrigerator were developed from existing models in published papers, which contained experimental data to validate the numerical models. Overall, it was found that although both can accurately model thermoacoustic machines, they present different optimal conditions, and Sage's solving method makes it more complex to model the standing wave.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Design optimization of thermoacoustic refrigerators
    Wetzel, M
    Herman, C
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 1997, 20 (01): : 3 - 21
  • [22] Design optimization of thermoacoustic refrigerators
    Wetzel, Martin
    Herman, Cila
    International Journal of Refrigeration, 1997, 20 (01): : 3 - 21
  • [23] Numerical calculation and analysis of regenerator in thermoacoustic heat engines
    Zhang, X.
    Guo, F.
    Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 2001, 29 (03): : 87 - 89
  • [24] A high frequency, power, and efficiency diaphragm acoustic-to-electric transducer for thermoacoustic engines and refrigerators
    Steiner, Thomas W.
    Antonelli, Keith B.
    Archibald, Geoffrey D. S.
    De Chardon, Briac
    Gottfried, Kristjan T.
    Malekian, Mohammad
    Kostka, Peter
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (02): : 948 - 959
  • [25] Stability of split Stirling refrigerators
    de Waele, A. T. A. M.
    Liang, W.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 1: CRYOGENIC TECHNOLOGIES AND APPLICATIONS, 2009, 150
  • [26] Energy and Efficiency Evaluation of Feedback Branch Design in Thermoacoustic Stirling-Like Engines
    Iniesta, Carmen
    Luis Olazagoitia, Jose
    Vinolas, Jordi
    Gros, Jaime
    ENERGIES, 2019, 12 (20)
  • [27] Adiabatic losses in stirling refrigerators
    Bauwens, L
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 1996, 118 (02): : 120 - 127
  • [28] Coefficient of performance of Stirling refrigerators
    Mungan, Carl E.
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (05)
  • [29] Numerical simulation for the design analysis of kinematic Stirling engines
    Araoz, Joseph A.
    Salomon, Marianne
    Alejo, Lucio
    Fransson, Torsten H.
    APPLIED ENERGY, 2015, 159 : 633 - 650
  • [30] THERMOACOUSTIC ENGINES
    SWIFT, GW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1988, 84 (04): : 1145 - 1180