Some New Characterizations of Trivial Ricci-Bourguignon Solitons

被引:0
|
作者
Al-Sodais, Hana [1 ]
Bin Turki, Nasser [1 ]
Deshmukh, Sharief [1 ]
Chen, Bang-Yen [2 ]
Shah, Hemangi Madhusudan [3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Homi Bhabha Natl Inst, Harish Chandra Res Inst, Jhunsi 211019, India
关键词
Einstein soliton; Ricci-Bourguignon soliton; Ricci soliton; Schouten soliton; self-similar solution; soliton;
D O I
10.1155/jom/7917018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Ricci-Bourguignon soliton is a self-similar solution to the Ricci-Bourguignon flow equation, and a Ricci-Bourguignon soliton is called trivial if its potential field is zero or killing. Each trivial Ricci-Bourguignon soliton is an Einstein manifold. The main purpose of this paper is to discover geometric conditions on compact Ricci-Bourguignon solitons for which the solitons are trivial. In Section 3, we establish three new characterizations for a compact connected Ricci-Bourguignon soliton to be trivial. In Section 4, we discover three conditions which assure that a compact gradient Ricci-Bourguignon soliton is trivial. Some applications of our results are also presented.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Geometry of almost contact metrics as an almost *-?-Ricci-Bourguignon solitons
    Dey, Santu
    Suh, Young Jin
    REVIEWS IN MATHEMATICAL PHYSICS, 2023, 35 (07)
  • [22] Ricci-Bourguignon solitons on real hypersurfaces in the complex hyperbolic space
    Suh, Young Jin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (07)
  • [23] Almost Ricci-Bourguignon Solitons on Doubly Warped Product Manifolds
    Shenawy, Sameh
    Bin Turki, Nasser
    Syied, Noha
    Mantica, Carlo
    UNIVERSE, 2023, 9 (09)
  • [24] ON RICCI-BOURGUIGNON h-ALMOST SOLITONS IN RIEMANNIAN MANIFOLDS
    Soylu, Yasemin
    JOURNAL OF SCIENCE AND ARTS, 2020, (03): : 673 - 680
  • [25] Ricci-Bourguignon solitons on real hypersurfaces in the complex hyperbolic quadric
    Young Jin Suh
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [26] Invariant Submanifolds of Hyperbolic Sasakian Manifolds and η-Ricci-Bourguignon Solitons
    Chaubey, Sudhakar K.
    Siddiqi, M. Danish
    Prakasha, D. G.
    FILOMAT, 2022, 36 (02) : 409 - 421
  • [27] On Ricci-Bourguignon solitons: Triviality, uniqueness and scalar curvature estimates
    Cunha, Antonio W.
    Lemos, Raquel
    Roing, Fernanda
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [28] Solitons of η-Ricci-Bourguignon Type on Submanifolds in (LCS)m Manifolds
    Yan, Lixu
    Vandana
    Siddiqui, Aliya Naaz
    Yoldas, Halil Ibrahim
    Li, Yanlin
    SYMMETRY-BASEL, 2024, 16 (06):
  • [29] Hyperbolic Ricci-Bourguignon flow
    Azami, Shahroud
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 399 - 409
  • [30] Generalized Ricci-Bourguignon flow
    Azami, Shahroud
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (02) : 638 - 662