Some New Characterizations of Trivial Ricci-Bourguignon Solitons

被引:0
|
作者
Al-Sodais, Hana [1 ]
Bin Turki, Nasser [1 ]
Deshmukh, Sharief [1 ]
Chen, Bang-Yen [2 ]
Shah, Hemangi Madhusudan [3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Homi Bhabha Natl Inst, Harish Chandra Res Inst, Jhunsi 211019, India
关键词
Einstein soliton; Ricci-Bourguignon soliton; Ricci soliton; Schouten soliton; self-similar solution; soliton;
D O I
10.1155/jom/7917018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Ricci-Bourguignon soliton is a self-similar solution to the Ricci-Bourguignon flow equation, and a Ricci-Bourguignon soliton is called trivial if its potential field is zero or killing. Each trivial Ricci-Bourguignon soliton is an Einstein manifold. The main purpose of this paper is to discover geometric conditions on compact Ricci-Bourguignon solitons for which the solitons are trivial. In Section 3, we establish three new characterizations for a compact connected Ricci-Bourguignon soliton to be trivial. In Section 4, we discover three conditions which assure that a compact gradient Ricci-Bourguignon soliton is trivial. Some applications of our results are also presented.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Some Characterizations on Gradient Almost r]-Ricci-Bourguignon Solitons
    Traore, Moctar
    Tastan, Hakan Mete
    Aydin, Sibel Gerdan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [2] Some results on Ricci-Bourguignon solitons and almost solitons
    Dwivedi, Shubham
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03): : 591 - 604
  • [3] Some results on almost η-Ricci-Bourguignon solitons
    Blaga, Adara M.
    Tastan, Hakan M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 168
  • [4] Some results on almost *-Ricci-Bourguignon solitons
    Dwivedi, Shubham
    Patra, Dhriti Sundar
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [5] Geometric characterizations of almost Ricci-Bourguignon solitons on Kenmotsu manifolds
    Prakasha, D. G.
    Amruthalakshmi, M. R.
    Suh, Young Jin
    FILOMAT, 2024, 38 (03) : 861 - 871
  • [6] On the characterization of Ricci-Bourguignon solitons
    Poddar, Rahul
    ANNALES POLONICI MATHEMATICI, 2024,
  • [7] ON ALMOST η-RICCI-BOURGUIGNON SOLITONS
    Traore, Moctar
    Tastan, Hakan Mete
    Aydin, Sibel Gerdan
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 493 - 508
  • [8] Characterizations of Ricci-Bourguignon Almost Solitons on Pseudo-Riemannian Manifolds
    Patra, Dhriti Sundar
    Ali, Akram
    Mofarreh, Fatemah
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [9] Gradient Ricci-Bourguignon solitons and applications
    Chaudhary, Ram Shankar
    Pal, Buddhadev
    AFRIKA MATEMATIKA, 2025, 36 (01)
  • [10] ON RICCI-BOURGUIGNON SOLITONS FOR STATISTICAL SUBMERSIONS
    Chen, Bang-yen
    Siddiqi, Mohd. Danish
    Siddiqui, Aliya naaz
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 62 (01) : 91 - 110