Defects enriched carbon nitride sponge with high surface area for enhanced photocatalytic hydrogen evolution

被引:0
|
作者
Wu, Ming [1 ]
Chen, Libo [1 ]
Sheng, Ying [1 ]
Song, Lizhi [2 ]
Zhou, Hu [1 ]
Jian, Jian [1 ]
Huang, Tiefan [1 ]
Liu, Botian [3 ]
Li, Xiaoning [4 ]
机构
[1] Hunan Univ Sci & Technol, Funct Film Mat Engn Res Ctr Hunan Prov, Sch Chem & Chem Engn,Hunan Prov Key Lab Adv Mat Ne, Key Lab Theoret Organ Chem & Funct Mol Minist Educ, Xiangtan 411201, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Mat Sci & Engn, Xiangtan 411201, Peoples R China
[3] Guilin Univ Technol, Dept Chem & Biol Engn, Guangxi Key Lab Electrochem & Magneto Chem Funct M, Guilin 541004, Peoples R China
[4] RMIT Univ, Sch Sci, Melbourne, Vic 3000, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Carbon nitride; Photocatalysis; Hydrogen production; Defects; Porous; G-C3N4; WATER; SEMICONDUCTOR;
D O I
10.1016/j.jcis.2025.02.130
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The limited efficiency of traditional photocatalysts necessitates innovative solutions for sustainable hydrogen production. In this study, a three-dimensional (3D) sponge-like porous carbon nitride (SCN-x) was successfully synthesized using a novel method involving the removal of unstable organic frameworks. The resulting SCN-x exhibits a highly interconnected network structure and significantly higher surface area (116.5 m2/g), compared to normal pure carbon nitride (PCN). Furthermore, this method introduces significant defects into SCN-x, such as additional foreign oxygen atoms, which not only modulate its band structure but also provide more active sites at the defects. These features increase the number of photo-induced electron-hole pairs due to enhanced light absorption, and suppresses their recombination by enabling them to efficiently participate in the reaction with increased number of active sites. As a result, compared to PCN, the optimal SCN-0.5 sample exhibits 86.6 times higher photocatalytic hydrogen production rate under visible light irradiation, along with excellent stability and a high apparent quantum yield (AQY) of 5.8 % under 420 nm illumination. Furthermore, with additional calcination under air, the 2SCN-0.5 sample delivers a record-high hydrogen evolution rate of 1663.5 mu mol center dot h-1 center dot g- 1 under natural sunlight irradiation. This work presents a novel method for preparing a metal-free photocatalyst by introducing significant defects and a high surface area, enabling efficient large-scale hydrogen production under natural sunlight.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 50 条
  • [31] Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbon nitride
    Mei, Shunkang
    Gao, Jianping
    Zhang, Ye
    Yang, Jiangbing
    Wu, Yongli
    Wang, Xiaoxue
    Zhao, Ruiru
    Zhai, Xiangang
    Hao, Chaoyue
    Li, Ruixia
    Yan, Jing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 506 : 58 - 65
  • [32] Effect of sodium doping on the structure and enhanced photocatalytic hydrogen evolution performance of graphitic carbon nitride
    Shang, Yanyang
    Ma, Yongjin
    Chen, Xi
    Xiong, Xiang
    Pan, Jun
    MOLECULAR CATALYSIS, 2017, 433 : 128 - 135
  • [33] Etching-induced highly porous polymeric carbon nitride with enhanced photocatalytic hydrogen evolution†
    Wang, Xiang
    Xia, Yuguo
    Wang, Haimei
    Jiao, Xiuling
    Chen, Dairong
    CHEMICAL COMMUNICATIONS, 2021, 57 (34) : 4138 - 4141
  • [34] Nitrogen rich carbon nitride synthesized by copolymerization with enhanced visible light photocatalytic hydrogen evolution
    Luo, Liang
    Zhang, Mei
    Wang, Pei
    Wang, Yuanhao
    Wang, Fu
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (02) : 1087 - 1091
  • [35] Enhanced photocatalytic hydrogen evolution over a heterojunction composed of silver cyanamide and graphitic carbon nitride
    Bai, Chunpeng
    Bi, Jingce
    Wu, Junbiao
    Han, Yide
    Zhang, Xia
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (19) : 16005 - 16012
  • [36] Enhanced electron delocalization on pyrimidine doped graphitic carbon nitride for boosting photocatalytic hydrogen evolution
    Chen, Yongfeng
    Lei, Lin
    Gong, Yuanbiao
    Wang, Hui
    Fan, Huiqing
    Wang, Weijia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 1058 - 1068
  • [37] Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution
    Niu, Ping
    Qiao, Man
    Li, Yafei
    Huang, Liang
    Zhai, Tianyou
    NANO ENERGY, 2018, 44 : 73 - 81
  • [38] MOF-templated in situ fabrication of surface-modified Ni/graphitic carbon nitride with enhanced photocatalytic hydrogen evolution
    Li, Mengli
    Song, Shuang
    Su, Changsheng
    Li, Lei
    Yan, Zheng
    Cao, Xuebo
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (14) : 3828 - 3835
  • [39] Ultrathin Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Evolution
    Zhang, Jian-Hua
    Wei, Mei-Juan
    Wei, Zhang-Wen
    Pan, Mei
    Su, Cheng-Yong
    ACS APPLIED NANO MATERIALS, 2020, 3 (02) : 1010 - 1018
  • [40] Photocatalytic hydrogen evolution based on carbon nitride and organic semiconductors
    Zhang, Hantang
    Liu, Jie
    Jiang, Lang
    NANOTECHNOLOGY, 2022, 33 (32)