High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method

被引:0
|
作者
Gu, Yanhua [1 ]
机构
[1] Zhengzhou Univ Econ & Business, Dept Publ Educ, Zhengzhou 450000, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 01期
关键词
fractional derivative; finite element method; stability; error analysis; FINITE-DIFFERENCE METHOD; SUB-DIFFUSION; APPROXIMATIONS; CONVERGENCE; SCHEMES;
D O I
10.3934/math.2025063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Korteweg-de Vries (KdV) equation generalizes the classical KdV equation by incorporating truncation effects within bounded domains, offering a flexible framework for modeling complex phenomena. This paper develops a high-order, fully discrete local discontinuous Galerkin (LDG) method with generalized alternating numerical fluxes to solve the fractional KdV equation, enhancing applicability beyond the limitations of purely alternating fluxes. An efficient finite difference scheme approximates the fractional derivatives, followed by the LDG method for solving the equation. The scheme is proven unconditionally stable and convergent. Numerical experiments confirm the method's accuracy, efficiency, and robustness, highlighting its potential for broader applications in fractional differential equations.
引用
收藏
页码:1367 / 1383
页数:17
相关论文
共 50 条
  • [1] High-order numerical method for scattering data of the Korteweg-De Vries equation
    Gudko, A.
    Gelash, A.
    Mullyadzhanov, R.
    XXXVI SIBERIAN THERMOPHYSICAL SEMINAR (STS 36), 2020, 1677
  • [2] A Hybridized Discontinuous Galerkin Method for the Nonlinear Korteweg-de Vries Equation
    Samii, Ali
    Panda, Nishant
    Michoski, Craig
    Dawson, Clint
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 191 - 212
  • [3] A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg-de Vries equation
    Liu, Hailiang
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 776 - 796
  • [4] A local discontinuous Galerkin method for the Korteweg-de Vries equation with boundary effect
    Liu, HL
    Yan, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 215 (01) : 197 - 218
  • [5] Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg-de Vries equation
    Hufford, Casey
    Xing, Yulong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 441 - 455
  • [6] CONSERVATIVE, HIGH-ORDER NUMERICAL SCHEMES FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION
    BONA, JL
    DOUGALIS, VA
    KARAKASHIAN, OA
    MCKINNEY, WR
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 351 (1695): : 107 - 164
  • [7] ON SOME HIGH-ORDER ACCURATE FULLY DISCRETE GALERKIN METHODS FOR THE KORTEWEG-DE VRIES EQUATION
    DOUGALIS, VA
    KARAKASHIAN, OA
    MATHEMATICS OF COMPUTATION, 1985, 45 (172) : 329 - 345
  • [8] A Hybridized Discontinuous Galerkin Method for the Nonlinear Korteweg–de Vries Equation
    Ali Samii
    Nishant Panda
    Craig Michoski
    Clint Dawson
    Journal of Scientific Computing, 2016, 68 : 191 - 212
  • [9] Central Discontinuous Galerkin Methods for the Generalized Korteweg-de Vries Equation
    Jiao, Mengjiao
    Cheng, Yingda
    Liu, Yong
    Zhang, Mengping
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 927 - 966
  • [10] A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: Energy conservation and boundary effect
    Yi, Nianyu
    Huang, Yunqing
    Liu, Hailiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 351 - 366