RGANet: A Human Activity Recognition Model for Extracting Temporal and Spatial Features from WiFi Channel State Information

被引:0
|
作者
Hu, Jianyuan [1 ]
Ge, Fei [1 ]
Cao, Xinyu [1 ]
Yang, Zhimin [1 ]
机构
[1] Cent China Normal Univ, Sch Comp Sci, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Human Activity Recognition (HAR); Channel State Information (CSI); Deep Learning (DL);
D O I
10.3390/s25030918
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the rapid advancement of communication technologies, wireless networks have not only transformed people's lifestyles but also spurred the development of numerous emerging applications and services. Against this backdrop, research on Wi-Fi-based human activity recognition (HAR) has become a hot topic in both academia and industry. Channel State Information (CSI) contains rich spatiotemporal information. However, existing deep learning methods for human activity recognition (HAR) typically focus on either temporal or spatial features. While some approaches do combine both types of features, they often emphasize temporal sequences and underutilize spatial information. In contrast, this paper proposes an enhanced approach by modifying residual networks (ResNet) instead of using simple CNN. This modification allows for effective spatial feature extraction while preserving temporal information. The extracted spatial features are then fed into a modifying GRU model for temporal sequence learning. Our model achieves an accuracy of 99.4% on the UT_HAR dataset and 99.24% on the NTU-FI HAR dataset. Compared to other existing models, RGANet shows improvements of 1.21% on the UT_HAR dataset and 0.38% on the NTU-FI HAR dataset.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Using Auditory Features for WiFi Channel State Information Activity Recognition
    Tegou T.
    Papadopoulos A.
    Kalamaras I.
    Votis K.
    Tzovaras D.
    SN Computer Science, 2020, 1 (1)
  • [2] An Efficient Human Activity Recognition System Using WiFi Channel State Information
    Jiao, Wanguo
    Zhang, Changsheng
    IEEE SYSTEMS JOURNAL, 2023, 17 (04): : 6687 - 6690
  • [3] Device Free Human Activity Recognition using WiFi Channel State Information
    Damodaran, Neena
    Schaefer, Joerg
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1069 - 1074
  • [4] Vision Transformers for Human Activity Recognition Using WiFi Channel State Information
    Luo, Fei
    Khan, Salabat
    Jiang, Bin
    Wu, Kaishun
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28111 - 28122
  • [5] Extracting hierarchical spatial and temporal features for human action recognition
    Zhang, Keting
    Zhang, Liqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (13) : 16053 - 16068
  • [6] Extracting hierarchical spatial and temporal features for human action recognition
    Keting Zhang
    Liqing Zhang
    Multimedia Tools and Applications, 2018, 77 : 16053 - 16068
  • [7] Human Behavior Recognition Based on WiFi Channel State Information
    Tang, Zhonghua
    Zhu, Aichun
    Wang, Zixuan
    Jiang, Keqing
    Li, Yifeng
    Hu, Fangqiang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1157 - 1162
  • [8] CSITime: Privacy-preserving human activity recognition using WiFi channel state information
    Yadav, Santosh Kumar
    Sai, Siva
    Gundewar, Akshay
    Rathore, Heena
    Tiwari, Kamlesh
    Pandey, Hari Mohan
    Mathur, Mohit
    NEURAL NETWORKS, 2022, 146 : 11 - 21
  • [9] Device free human activity and fall recognition using WiFi channel state information (CSI)
    Neena Damodaran
    Elis Haruni
    Muyassar Kokhkharova
    Jörg Schäfer
    CCF Transactions on Pervasive Computing and Interaction, 2020, 2 : 1 - 17
  • [10] Device free human activity and fall recognition using WiFi channel state information (CSI)
    Damodaran, Neena
    Haruni, Elis
    Kokhkharova, Muyassar
    Schaefer, Joerg
    CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2020, 2 (01) : 1 - 17