An Efficient Human Activity Recognition System Using WiFi Channel State Information

被引:9
|
作者
Jiao, Wanguo [1 ]
Zhang, Changsheng [1 ]
机构
[1] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
来源
IEEE SYSTEMS JOURNAL | 2023年 / 17卷 / 04期
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); Gramian angular field (GAF); human activity recognition (HAR); WiFi sensing;
D O I
10.1109/JSYST.2023.3293482
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Insufficient recognition precision and high complexity are two main challenges of human activity recognition using WiFi channel state information (CSI), which has attracted more attention due to its low cost and easy realization. To address these challenges, we propose a novel framework based on Gramian angular fields (GAFs). This framework includes two transformation methods, Gramian angular sum field (GASF) and Gramian angular difference field (GADF), which effectively extract information from CSI and convert it into a CSI-GAF image. Subsequently, a convolutional neural network (CNN) is designed to analyze these images and obtain activity information. By incorporating a transformation module that preserves and expands the original CSI information, the proposed framework utilizes the powerful feature extraction capabilities of the CNN in image processing. Test results on public CSI datasets (Wiar, SAR, and Widar3.0) demonstrate that the recognition accuracy based on the GADF outperforms that of GASF, reaching 99.4% and 99.0%, respectively, when the CNN has only four convolutional layers. Moreover, the proposed framework exhibits low complexity, which outperforms three classical models (ResNet, VGG19, and ShufflenetV2) in terms of both parameters and required floating-point computations.
引用
收藏
页码:6687 / 6690
页数:4
相关论文
共 50 条
  • [1] Device Free Human Activity Recognition using WiFi Channel State Information
    Damodaran, Neena
    Schaefer, Joerg
    [J]. 2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1069 - 1074
  • [2] Vision Transformers for Human Activity Recognition Using WiFi Channel State Information
    Luo, Fei
    Khan, Salabat
    Jiang, Bin
    Wu, Kaishun
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28111 - 28122
  • [3] Using Auditory Features for WiFi Channel State Information Activity Recognition
    Tegou T.
    Papadopoulos A.
    Kalamaras I.
    Votis K.
    Tzovaras D.
    [J]. SN Computer Science, 2020, 1 (1)
  • [4] CSITime: Privacy-preserving human activity recognition using WiFi channel state information
    Yadav, Santosh Kumar
    Sai, Siva
    Gundewar, Akshay
    Rathore, Heena
    Tiwari, Kamlesh
    Pandey, Hari Mohan
    Mathur, Mohit
    [J]. NEURAL NETWORKS, 2022, 146 : 11 - 21
  • [5] Device free human activity and fall recognition using WiFi channel state information (CSI)
    Damodaran, Neena
    Haruni, Elis
    Kokhkharova, Muyassar
    Schaefer, Joerg
    [J]. CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2020, 2 (01) : 1 - 17
  • [6] Device free human activity and fall recognition using WiFi channel state information (CSI)
    Neena Damodaran
    Elis Haruni
    Muyassar Kokhkharova
    Jörg Schäfer
    [J]. CCF Transactions on Pervasive Computing and Interaction, 2020, 2 : 1 - 17
  • [7] Human Behavior Recognition Based on WiFi Channel State Information
    Tang, Zhonghua
    Zhu, Aichun
    Wang, Zixuan
    Jiang, Keqing
    Li, Yifeng
    Hu, Fangqiang
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1157 - 1162
  • [8] Human Activity Recognition System Based on Channel State Information
    Yang, Xiaolong
    He, Ailin
    Zhou, Mu
    Jiang, Qing
    Li, Zhihao
    [J]. 2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 1415 - 1420
  • [9] A Survey on Behavior Recognition Using WiFi Channel State Information
    Yousefi, Siamak
    Narui, Hirokazu
    Dayal, Sankalp
    Ermon, Stefano
    Valaee, Shahrokh
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (10) : 98 - 104
  • [10] Attention-Based Hybrid Deep Learning Network for Human Activity Recognition Using WiFi Channel State Information
    Mekruksavanich, Sakorn
    Phaphan, Wikanda
    Hnoohom, Narit
    Jitpattanakul, Anuchit
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (15):