Uncertainty-driven dynamic ensemble framework for rotating machinery fault diagnosis under time-varying working conditions

被引:0
|
作者
Zhu, Renjie [1 ]
Song, Enzhe [2 ]
Yao, Chong [2 ]
Ke, Yun [2 ]
机构
[1] Harbin Engn Univ, Coll Power & Energy Engn, Harbin, Peoples R China
[2] Harbin Engn Univ, Yantai Res Inst, Yantai Econ & Technol Dev Area, 1 Qingdao St, Yantai 264000, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotating machinery; fault diagnosis; dynamic ensemble; Bayesian convolutional neural network; time-varying working condition; BEARING;
D O I
10.1177/10775463241294127
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Multi-scale ensemble learning combines different scales of feature resolution, thereby improving fault diagnostic accuracy. However, the effectiveness of different information scales in characterizing fault features under time-varying speed conditions varies with speed. It is difficult for existing ensemble strategies to ensure the effectiveness of feature information when ensemble multi-scale feature information is involved. Accordingly, we propose an uncertainty-driven dynamic ensemble Bayesian convolutional neural network (DEBCNN) framework. The uncertainty of the results of different scale models was used to dynamically determine their weights in the ensemble framework, which reduced the influence of irrelevant features on the diagnostic results. By employing the proposed dynamic ensemble strategy, the ensemble framework can utilize fault feature information corresponding to different rotational speeds in the final diagnostic results. Experiments on motor and bearing datasets illustrate the superiority of this strategy over other techniques. This study provides useful insights for further research in the field of fault diagnosis of rotating machinery at time-varying speeds.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions
    Kim, Seokgoo
    Park, Hyung Jun
    Seo, Yun-Ho
    Choi, Joo-Ho
    IEEE ACCESS, 2022, 10 : 4993 - 5001
  • [12] Dynamic model-assisted disentanglement framework for rolling bearing fault diagnosis under time-varying speed conditions
    Xu, Yuhui
    Jiang, Yimin
    Xia, Tangbin
    Wang, Dong
    Chen, Zhen
    Pan, Ershun
    Xi, Lifeng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 230
  • [13] Feature Space Transformation for Fault Diagnosis of Rotating Machinery under Different Working Conditions
    Jang, Gye-Bong
    Cho, Sung-Bae
    SENSORS, 2021, 21 (04) : 1 - 18
  • [14] Optimized weights Time-Frequency Analysis: A novel method for fault diagnosis in rotating Machinery under Time-Varying speeds
    Sun, Bin
    Li, Hongkun
    Wang, Chaoge
    Ma, Zhenhui
    Guan, Xichun
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 226
  • [15] A novel denoising strategy based on sparse modeling for rotating machinery fault detection under time-varying operating conditions
    Liu, Zimin
    Zhou, Haoxuan
    Wen, Guangrui
    Lei, Zihao
    Su, Yu
    Chen, Xuefeng
    MEASUREMENT, 2023, 210
  • [16] Semisupervised Subdomain Adaptation Graph Convolutional Network for Fault Transfer Diagnosis of Rotating Machinery Under Time-Varying Speeds
    Liang, Pengfei
    Xu, Leitao
    Shuai, Hanqin
    Yuan, Xiaoming
    Wang, Bin
    Zhang, Lijie
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (01) : 730 - 741
  • [17] Multisource Domain Feature Adaptation Network for Bearing Fault Diagnosis Under Time-Varying Working Conditions
    Wang, Rui
    Huang, Weiguo
    Wang, Jun
    Shen, Changqing
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [18] Order spectrum analysis enhanced by surrogate test and Vold-Kalman filtering for rotating machinery fault diagnosis under time-varying speed conditions
    Chen, Xiaowang
    Feng, Zhipeng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 154
  • [19] A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions
    Han, Te
    Li, Yan-Fu
    Qian, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [20] Adaptive fault diagnosis method for rotating machinery with unknown faults under multiple working conditions
    Ge, Yang
    Zhang, Fusheng
    Ren, Yong
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 63 : 177 - 184