Advances on Radiation-Tolerant Geiger Photodiodes

被引:0
|
作者
Johnson, Erik B. [1 ]
Blakeley, Richard [1 ]
Downing, Matthew [1 ]
Dadey, Adam [2 ]
Campbell, Joe [2 ]
机构
[1] Radiat Monitoring Devices, 44 Hunt St, Watertown, MA 02472 USA
[2] Univ Virginia, 351 McCormick Rd,POB 400743, Charlottesville, VA 22904 USA
关键词
Geiger photodiode; III-V semiconductor; solid-state photomultiplier; TEMPERATURE-DEPENDENCE;
D O I
10.1117/12.3027514
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The operation of nuclear instruments in high-radiation environments is critical for a myriad of applications, which include intense particle beams for future science experiments, in-situ measurements for emerging and advanced nuclear fuel cycles, or operation in a diverse range of environmental and harsh radiation conditions for military applications. A common tool used to measure ionizing radiation is scintillation materials, which produce a light pulse with an intensity proportional to the energy deposited, where a photodetector is used to measure the light pulse. The photomultiplier tube is a photodetector sensitive enough for scintillator readout, yet these devices are typically bulky, fragile, expensive, and vulnerable to magnetic fields. Though SiPMs, formed from an array of single photon avalanche photodiodes, or Geiger photodiodes (GPD), are replacing photomultiplier tubes, they are susceptible to radiation damage. This work discusses new technologies of GPDs consisting of GaAs and AlGaAsSb for operation in intense radiation and environmental conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Atomic-scale design of radiation-tolerant nanocomposites
    Demkowicz, M. J.
    Bellon, P.
    Wirth, B. D.
    MRS BULLETIN, 2010, 35 (12) : 992 - 998
  • [22] A radiation-tolerant electronic readout system for portal imaging
    Östling, J
    Brahme, A
    Danielsson, M
    Iacobaeus, C
    Peskov, V
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 525 (1-2): : 308 - 312
  • [23] RADIATION-TOLERANT ELECTRONICS TESTING OF A PROTOTYPE ISOLATING PREAMPLIFIER
    MILLARD, J
    FUSION ENGINEERING AND DESIGN, 1995, 29 : 330 - 333
  • [24] Development of custom radiation-tolerant DCDC converter ASICs
    Faccio, F.
    Michelis, S.
    Orlandi, S.
    Blanchot, G.
    Fuentes, C.
    Saggini, S.
    Ongaro, F.
    JOURNAL OF INSTRUMENTATION, 2010, 5
  • [25] A high precision radiation-tolerant LVDT conditioning module
    Masi, A.
    Danzeca, S.
    Losito, R.
    Peronnard, P.
    Secondo, R.
    Spiezia, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 745 : 73 - 81
  • [26] Commercial SOS technology for radiation-tolerant space applications
    Lyons, G
    1998 IEEE RADIATION EFFECTS DATA WORKSHOP, 1998, : 96 - 99
  • [27] Space wars: Radiation-tolerant FPGAs challenge ASICs
    Pragasam, Ravi
    Electronics World, 2007, 112 (1849): : 36 - 39
  • [28] Atomic-scale design of radiation-tolerant nanocomposites
    M. J. Demkowicz
    P. Bellon
    B. D. Wirth
    MRS Bulletin, 2010, 35 : 992 - 998
  • [29] Radiation Testing of Optical and Semiconductor Components for Radiation-Tolerant LED Luminaires
    Floriduz, Alessandro
    Devine, James D.
    2018 18TH EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS), 2018, : 109 - 116
  • [30] Advances in multipixel Geiger-mode avalanche photodiodes (silicon photomultiplies)
    Musienko, Yuri
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 598 (01): : 213 - 216