Advances on Radiation-Tolerant Geiger Photodiodes

被引:0
|
作者
Johnson, Erik B. [1 ]
Blakeley, Richard [1 ]
Downing, Matthew [1 ]
Dadey, Adam [2 ]
Campbell, Joe [2 ]
机构
[1] Radiat Monitoring Devices, 44 Hunt St, Watertown, MA 02472 USA
[2] Univ Virginia, 351 McCormick Rd,POB 400743, Charlottesville, VA 22904 USA
关键词
Geiger photodiode; III-V semiconductor; solid-state photomultiplier; TEMPERATURE-DEPENDENCE;
D O I
10.1117/12.3027514
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The operation of nuclear instruments in high-radiation environments is critical for a myriad of applications, which include intense particle beams for future science experiments, in-situ measurements for emerging and advanced nuclear fuel cycles, or operation in a diverse range of environmental and harsh radiation conditions for military applications. A common tool used to measure ionizing radiation is scintillation materials, which produce a light pulse with an intensity proportional to the energy deposited, where a photodetector is used to measure the light pulse. The photomultiplier tube is a photodetector sensitive enough for scintillator readout, yet these devices are typically bulky, fragile, expensive, and vulnerable to magnetic fields. Though SiPMs, formed from an array of single photon avalanche photodiodes, or Geiger photodiodes (GPD), are replacing photomultiplier tubes, they are susceptible to radiation damage. This work discusses new technologies of GPDs consisting of GaAs and AlGaAsSb for operation in intense radiation and environmental conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Radiation-Tolerant Electronics
    Leroux, Paul
    ELECTRONICS, 2022, 11 (19)
  • [2] Radiation-tolerant supervisory circuits
    Zong, Y
    Franco, FJ
    Cachero, AH
    Casas-Cubillos, J
    Rodríguez-Ruiz, MA
    Fernandes, JA
    Marques, J
    Agapito, JA
    2005 Spanish Conference on Electron Devices, Proceedings, 2005, : 69 - 72
  • [3] Radiation-tolerant inductive proximity detectors
    Sharp, Richard
    Pater, Lee
    2000, Thomas Telford Services Ltd, United Kingdom (39):
  • [4] Designing radiation-tolerant integrated circuits
    Bouldin, D
    IEEE CIRCUITS & DEVICES, 2002, 18 (02): : 5 - 6
  • [5] Radiation-tolerant inductive proximity detectors
    Sharp, R
    Pater, L
    NUCLEAR ENERGY-JOURNAL OF THE BRITISH NUCLEAR ENERGY SOCIETY, 2000, 39 (02): : 125 - 129
  • [6] Carbon Nanotubes for Radiation-Tolerant Electronics
    Kanhaiya, Pritpal S.
    Yu, Andrew
    Netzer, Richard
    Kemp, William
    Doyle, Derek
    Shulaker, Max M.
    ACS NANO, 2021, 15 (11) : 17310 - 17318
  • [7] Radiation-tolerant X- and γ-ray detectors
    Gott, Yu. V.
    Stepanenko, M. M.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2010, 53 (02) : 180 - 184
  • [8] SOCRATES: a radiation-tolerant SoC generator framework
    Andorno, Marco
    Caratelli, Alessandro
    Ceresa, Davide
    Denkinger, Benoit
    Kloukinas, Kostas
    Nookala, Anvesh
    Pejasinovic, Risto
    JOURNAL OF INSTRUMENTATION, 2025, 20 (02):
  • [9] Radiation-tolerant X- and γ-ray detectors
    Yu. V. Gott
    M. M. Stepanenko
    Instruments and Experimental Techniques, 2010, 53 : 180 - 184
  • [10] The radiation-tolerant x-ray monitor
    Gott, Yu. V.
    Stepanenko, M. M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):